logo

high-performance dendrite-free seawater-based batteries

PDF Publication Title:

high-performance dendrite-free seawater-based batteries ( high-performance-dendrite-free-seawater-based-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20334-6 the existence of the adsorption and/or binding of Mn with cations/metal59,60. To further confirm the local structure change on the Zn-Mn anode during charge/discharge processes, the one- dimensional (1D) Fourier transform of the extended X-ray absorption fine structure (EXAFS) spectra of Mn K-edge for the Zn-Mn anode at three states of charge/discharge process (Supplementary Fig. 48) was first applied. Although some changes are found, this 1D EXAFS does not have a good resolution to distinguish the broad peak ~2.2 Å61,62. Then the two-dimensional (2D) wavelet transform of the EXAFS spectra was used, as shown in Fig. 4i–k58. Clearly, the 2D spectra that combine the R-space and the k-space can distinguish the differences in three states. The single peak found in pristine (Fig. 4i) and fully discharged (Fig. 4j) Zn-Mn anode suggests the existence of Mn-Mn scattering only. In contrast, the fully charged (Fig. 4k) Zn-Mn anode has two well-splitting peaks, suggesting the co-existence of Mn-Mn and newly formed Mn-X (X = Mg, etc.) scattering that could be due to the adsorption and/or alloying of Mn with cations/metal. All these characterizations confirmed the success of the rationally designed Zn-Mn alloy anode and the benefits of using seawater-based electrolytes for aqueous Zn batteries. Discussion In conclusion, we report a universal strategy for designing 3D Zn- Mn alloy anodes with a potential extension to other alloy-based anode materials for stable, high-performance, dendrite-free, seawater-based aqueous batteries. Equally important, we built an in-situ protocol to mimic the actual electrochemical environ- ments of aqueous batteries and directly observe the metal plating/ stripping processes on the electrode surface. The 3D Zn-Mn alloy anode, even under harsh electrochemical environments (hetero- ions interference from the seawater-based electrolyte and high current density of 80 mA cm−2), maintained controllable Zn plating/stripping with robust structural stability and absolute reversibility for aqueous batteries. As a proof-of-concept, the seawater-based aqueous ZIBs and ZABs using Zn-Mn alloy anodes delivered outstanding performance towards energy sto- rage, which proved the novelty and significance of this work. The concept demonstrated in this work will bring a paradigm shift in the design of high-performance alloy anodes for aqueous/non- aqueous batteries and beyond, therefore, revolutionizing the battery industries. Methods Galvanostatic alloy electrodeposition of Zn-Mn alloys. All three-dimensional (3D) structured Zn-Mn alloys were electrodeposited on Zn substrates (99.95% metals basis, 0.25 mm thick, Alfa AesarTM). In all, 100 mL deionized (DI) water was pre-heated at 80 °C as the solvent to dissolve 0.2 M zinc sulfate heptahydrate (ZnSO4·7H2O, Fisher Chemical), 0.2 M sodium citrate dihydrate (Granular/Certi- fied), and 0.6 M ethylenediaminetetraacetic acid disodium salt dihydrate (Crys- talline/Certified ACS, Fisher Chemical) under continuous stirring for 30 min (noted as Solution A). Then, 0.6 M manganese (II) sulfate monohydrate (MnSO4·H2O, 99+%, extra pure, ACROS OrganicsTM) was added to Solution A and stirred for another 30 min until a transparent solution was obtained (noted as Solution B). The Zn-Mn alloys were then deposited on Zn substrates using a two- electrode setup with platinum mesh as the counter electrode at a current density of 0.3 A cm−2 in Solution B. Potentiostatic alloy electrodeposition of Zn-Cu alloys. In total, 100 mL DI water was pre-heated as the solvent to dissolve zinc sulfate heptahydrate (ZnSO4·7H2O, Fisher Chemical), copper (II) sulfate pentahydrate (Fisher Chemical), and boric acid (Powder/Certified ACS, Fisher Chemical) under continuous stirring for 20 min until a transparent solution was obtained (noted as Solution C). The Zn-Cu alloys were deposited on Zn substrates using the two-electrode setup in Solution C. Zn@Zn anode fabrication. The Zn@Zn anode was electrodeposited in Solution A using the same conditions as those for the deposition of Zn-Mn alloy. Seawater-based aqueous electrolytes. Nine kinds of aqueous electrolytes were prepared: Electrolyte 1 (2 M ZnSO4 and 0.1 M MnSO4 in DI water); Electrolyte 2 (2 M ZnSO4 in DI water); Electrolyte 3 (2 M ZnSO4 and 0.1 M MnSO4 in seawater); Electrolyte 4 (2 M ZnSO4 in seawater); Electrolyte 5 (1 M ZnSO4 and 1 M MgSO4 in seawater); Electrolyte 6 (1 M ZnSO4 and 1 M MgSO4 in DI water); Electrolyte 7 (2 M MgSO4 in seawater); Electrolyte 8 (2 M Na2SO4 in seawater); and Electrolyte 9 (2 M MgSO4 in DI water). The seawater was taken from Florida’s nearshore zone, physically filtered to remove the suspended particles, and directly used in this work without any other treatment. Cathode preparation for rechargeable Zn aqueous batteries. MnO2 cathode materials were prepared for Zn-ion batteries (ZIBs) full-cell testing by a hydro- thermal method. Typically, 0.5 g MnSO4·H2O and 2 mL 0.5 M H2SO4 were added to 100 mL DI water under continuous stirring until a clear solution (noted as Solution D) was obtained. After that, 25 mL 0.1 M KMnO4 aqueous solution was slowly added to Solution D and stirred for 5 h. The as-prepared solution was transferred to a Teflon-lined PTFE autoclave vessel and heated at 120 °C for 8 h. Then, MnO2 powder was collected, washed by DI water, and dried at 60 °C overnight in a vacuum oven. The ZIBs cathodes were prepared by a doctor-blade method. First, MnO2 powder, polyvinylidene fluoride (PVDF) binder, and super P carbon were mixed in N-methyl pyrrolidinone (NMP) solvent in a weight ratio of 7:1:2 to get a homogenous slurry. Then, the obtained mixed slurry was coated onto carbon paper (CP) and dried at 80 °C overnight in the vacuum oven. Pt/C@RuO2 and F-doped PtCo nanosheets on the nickel foam (PtCoF@nickel foam) were prepared as cathodes for Zn-air batteries (ZABs) testing according to our prior work53. The Pt/C@RuO2 cathode was prepared in the following procedure: (1) 3.2 mg Pt/C powder was mixed with 3.2 mg RuO2 in the 3.2-ml Nafion/isopropanol solution (98:2, v/v), and then ultrasonicated for 20 min. The obtained suspension was disposed on 4 × 4 cm2 carbon paper and dried at 60 °C. The single-atom PtCoF@nickel foam was prepared by fluorine (F)-plasma treatment using carbon tetrafluoride as a source in a plasma etcher (Trion MiniLock II RIE-ICP) using the PtCo@nickel foam as a precursor. Electrochemical tests. Symmetric cells were assembled using Zn (or Zn-Mn alloy) foils as both cathode and anode, which were separated by a glass fiber membrane saturated with different aqueous electrolytes. For Cu//Zn (or Cu//Zn-Mn) cells, Cu and Zn (or Zn-Mn alloy) foils were used as cathode and anode, respectively, for the plating/stripping tests in the aqueous Zn batteries. The active areas of electrodes were 1 cm2 (1 cm × 1 cm) in coin cells. Cyclic voltammetry (CV) and electro- chemical impedance spectroscopy (EIS) data were measured by CHI 600E elec- trochemical workstation. The electrochemical performance of aqueous electrolytes was tested in a three-electrode setup (Pt mesh as the working electrode, Zn (or Zn- Mn alloy) foil as both counter and reference electrodes) at a scan rate of 1 mV s−1. Zn (or Zn-Mn alloy) anodes and MnO2@Carbon Paper (MnO2@CP) cathodes were assembled in CR2032 coin cells for the ZIBs full-cell testing. The mass loading of MnO2 was 2–3 mg cm−2. Pt/C@RuO2 (or PtCoF@nickel foam) cathodes and Zn (Zn-Mn alloy) anodes were assembled with an electrolyte consisting of 6 M KOH and 0.2 M zinc acetate for ZABs full-cell testing. Gel electrolytes were also prepared by mixing polyvinyl alcohol (PVA) powder with 6 M KOH and 0.2 M zinc acetate at 80 °C to assemble the flexible ZABs. Materials characterizations. X-ray diffraction patterns (XRD) were obtained on a film XRD system (Panalytical X’celerator multi-element detector with Cu Kα radiation source, λ = 1.54056 Å). The surface topographies were characterized by atomic force microscopy (AFM, Veeco Dimension 3100) using tapping mode. The contact angles were measured with an OCA 15EC goniometer and analyzed with the SCA 20 module from DataPhysics Instruments. A droplet volume of 3 μL was used for each measurement. The morphologies of the materials were characterized by scanning electron microscopy (SEM, ZEISS ultra 55) with EDS mapping. Transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and X-ray spectroscopy (EDS) were performed using a probe corrected FEI Titan 80–300 microscope operating at 300 kV. Mn K-edge X-ray absorption spectroscopy experiments were carried out at beamline 12BM, Advanced Photon Source (APS), Argonne National Laboratory (ANL). Data reduction, data analysis, and EXAFS fitting were performed with the Athena, Artemis, and IFEFFIT software packages. In-situ optical imaging. To realize in-situ imaging of Zn plating/stripping dynamics, a two-electrode system was used in which the pristine Zn foils were employed as counter and reference electrodes, and 3D Zn-Mn alloy was used as a working electrode. To realize the in-situ imaging in the aqueous electrolyte, a special electrochemical cell was designed using polydimethylsiloxane (PDMS, prepared by the mixing of base elastomer and curing agent with a ratio of 10:1 and then cross-linking for 3 h at 75 °C) to hold the electrolyte. In all, 800 μL electrolyte was applied to the cell with a size of 1 cm × 1 cm × 3 mm. Images were recorded with a CCD camera (FLIR Blackfly S USB 3, 720 × 540 pixels) on an Olympus BX60 upright microscope. To minimize the refractive index mismatch between the air and high concentration saline electrolyte, a ×20 water immersion objective (working distance: 2 mm, N.A. 1.0, Thorlab) was submerged into the electrolytes 10 NATURE COMMUNICATIONS | (2021)12:237 | https://doi.org/10.1038/s41467-020-20334-6 | www.nature.com/naturecommunications

PDF Image | high-performance dendrite-free seawater-based batteries

high-performance-dendrite-free-seawater-based-batteries-010

PDF Search Title:

high-performance dendrite-free seawater-based batteries

Original File Name Searched:

s41467-020-20334-6.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP