
PDF Publication Title:
Text from PDF Page: 069
Energies 2021, 14, 6805 69 of 72 211. Hu,J.;Zhang,W.;Zheng,W.;Chen,G.;Shi,X.;Yongchang,X.;Lv,H.;Yuan,C.BackflowCascadeNovelProcessforProducing Lithium-7 Isotope. U.S. Patent 9,963,760 B2, 8 May 2018. 212. Ueda,M.EffectiveRecoveryofLithiumfromLithiumIonBatteryWaste.U.S.Patent9,147,918B2,29September2015. 213. Xu,J.;Li,Z.;Gu,Z.;Wang,G.;Liu,J.GreenandEfficientExtractionStrategytoLithiumIsotopeSeparationwithDoubleIonic Liquids as the Medium and Ionic Associated Agent. J. Radioanal. Nucl. Chem. 2013, 295, 2103–2110. 214. Shi,C.;Duan,D.;Jia,Y.;Jing,Y.Ahighlyefficientsolventsystemcontainingionicliquidintributylphosphateforlithiumion extraction. J. Mol. Liq. 2014, 200, 191–195. [CrossRef] 215. Shi,C.;Jia,Y.;Xie,S.;Qiu,F.;Jing,Y.Extractionoflithiumionusingionicliquidsdissolvedintributylphosphate.Int.Proc.Chem. Biol. Environ. Eng. 2015, 90, 76–81. 216. Shi,C.;Jing,Y.;Jia,Y.Solventextractionoflithiumionsbytri-n-butylphosphateusingaroomtemperatureionicliquid.J.Mol. Liq. 2016, 215, 640–646. [CrossRef] 217. Shi,C.;Jing,Y.;Jia,Y.Tri-n-butylphosphate–ionicliquidmixturesforLi+extractionfromMg2+-containingbrinesat303–343K. Russ. J. Phys. Chem. A 2017, 91, 692–696. [CrossRef] 218. Shi, C.; Jing, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jia, Y. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 2017, 172, 473–479. [CrossRef] 219. Shi,C.;Li,H.;Liu,B.;Qin,Y.;Song,G.Solventextractionoflithiumfromaqueoussolutionusinganammoniumionicliquid.J. Mol. Liq. 2020, 304, 112756. [CrossRef] 220. Wang, X.; Jing, Y.; Liu, H.; Yao, Y.; Shi, C.; Xiao, J.; Wang, S.; Jia, Y. Extraction of lithium from salt lake brines by bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids. Chem. Phys. Lett. 2018, 707, 8–12. [CrossRef] 221. Zante,G.;Trebouet,D.;Boltoeva,M.Solventextractionoflithiumfromsimulatedshalegasproducedwaterwithabifunctional ionic liquid. Appl. Geochem. 2020, 123, 104783. [CrossRef] 222. Masmoudi,A.;Zante,G.;Trebouet,D.;Barillon,R.;Boltoeva,M.UnderstandingtheMechanismofLithiumIonExtractionUsing Tributyl Phosphate in Room Temperature Ionic Liquid. Solvent Extr. Ion Exch. 2020, 38, 777–799. [CrossRef] 223. Misra,B.M.;Gill,J.S.Supportedliquidmembranesinmetalseparations.InChemicalSeparationswithLiquidMembranes;Bartsch, R.A., Way, J.D., Eds.; ACS Symposium Series v. 642; American Chemical Society: Washington, DC, USA, 1996; pp. 361–375. 224. Parhi,P.K.;Sarangi,K.Separationofcopper,zinc,cobaltandnickelionsbysupportedliquidmembranetechniqueusingLIX84I, TOPS-99 and Cyanex 272. Sep. Purif. Technol. 2008, 59, 169–174. [CrossRef] 225. Parhi,P.K.SupportedLiquidMembranePrincipleandItsPractices:AShortReview.J.Chem.2013,2013,618236.[CrossRef] 226. Ma,P.;Chen,X.D.Lithiumextractionfromamulticomponentmixtureusingsupportedliquidmembranes.Sep.Sci.Technol.2000, 35, 2513–2533. [CrossRef] 227. BASF.LIX54-100.2020.Availableonline:https://e-applications.basf-ag.de/data/basf-pcan/pds2/pds2-web.nsf/98936462F47 4FB1BC1257577004451CB/$File/LIX_r_54-100_E.pdf (accessed on 5 March 2021). 228. Bansal,B.;Chen,X.D.;Hossain,M.M.TransportoflithiumthroughasupportedliquidmembraneofLIX54andTOPOinkerosene. Chem. Eng. Process.-Process. Intensif. 2005, 44, 1327–1336. [CrossRef] 229. Paredes,C.;deSanMiguel,E.R.Selectivelithiumextractionandconcentrationfromdilutedalkalineaqueousmediabyapolymer inclusion membrane and application to seawater. Desalination 2020, 487, 114500. [CrossRef] 230. Song,J.;Li,X.-M.;Zhang,Y.;Yin,Y.;Zhao,B.;Li,C.;Kong,D.;He,T.Hydrophilicnanoporousion-exchangemembranesasa stabilizing barrier for liquid–liquid membrane extraction of lithium ions. J. Membr. Sci. 2014, 471, 372–380. [CrossRef] 231. Sharma,A.D.;Patil,N.D.;Patwardhan,A.W.;Moorthy,R.K.;Ghosh,P.K.SynergisticinterplaybetweenD2EHPAandTBPtowards the extraction of lithium using hollow fiber supported liquid membrane. Sep. Sci. Technol. 2016, 51, 2242–2254. [CrossRef] 232. Sirkar,K.K.;Yang,Z.;Guha,A.K.MethodandAPPARATUSforExtractionandRecoveryofIonsfromSolutions.U.S.Patent 5,868,935, 9 February 1999. 233. Zhang,Y.;Wang,L.;Sun,W.;Hu,Y.H.;Tang,H.H.MembranetechnologiesforLi+/Mg2+separationfromsalt-lakebrinesand seawater: A comprehensive review. J. Ind. Eng. Chem. 2020, 81, 7–23. [CrossRef] 234. Li,X.H.;Mo,Y.H.;Qing,W.H.;Shao,S.L.;Tang,C.Y.Y.;Li,J.X.Membrane-basedtechnologiesforlithiumrecoveryfromwater lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [CrossRef] 235. Razmjou,A.;Asadnia,M.;Hosseini,E.;Korayem,A.H.;Chen,V.Designprinciplesofionselectivenanostructuredmembranes for the extraction of lithium ions. Nat. Commun. 2019, 10, 15. [CrossRef] 236. Somrani,A.;Hamzaoui,A.;Pontie,M.Studyonlithiumseparationfromsaltlakebrinesbynanofiltration(NF)andlowpressure reverse osmosis (LPRO). Desalination 2013, 317, 184–192. [CrossRef] 237. Cha-umpong,W.;Li,Q.Y.;Razmjou,A.;Chen,V.ConcentratingbrineforlithiumrecoveryusingGOcompositepervaporation membranes. Desalination 2021, 500, 14. [CrossRef] 238. Wang, M.; Zhao, Y.; Li, Y.; Wang, H.; Yang, H. Method for Separation and Enrichment of Lithium. U.S. Patent Application 2020/0306696 A1, 1 October 2020. 239. Wen,X.;Ma,P.;Zhu,C.;He,Q.;Deng,X.Preliminarystudyonrecoveringlithiumchloridefromlithium-containingwatersby nanofiltration. Sep. Purif. Technol. 2006, 49, 230–236. [CrossRef] 240. Yang,G.;Shi,H.;Liu,W.;Xing,W.;Xu,N.InvestigationofMg2+/Li+separationbynanofiltration.Chin.J.Chem.Eng.2011,19, 586–591. [CrossRef]PDF Image | Recovery of Lithium from Geothermal Brines
PDF Search Title:
Recovery of Lithium from Geothermal BrinesOriginal File Name Searched:
energies-14-06805-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |