logo

Recovery of Lithium from Geothermal Brines

PDF Publication Title:

Recovery of Lithium from Geothermal Brines ( recovery-lithium-from-geothermal-brines )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 070

Energies 2021, 14, 6805 70 of 72 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. Bi,Q.;Zhang,Z.;Zhao,C.;Tao,Z.StudyontherecoveryoflithiumfromhighMg2+/Li+ratiobrinebynanofiltration.WaterSci. Technol. 2014, 70, 1690–1694. [CrossRef] Sun,S.-Y.;Cai,L.-J.;Nie,X.-Y.;Song,X.;Yu,J.-G.SeparationofmagnesiumandlithiumfrombrineusingaDesalnanofiltration membrane. J. Water Proc. Eng. 2015, 7, 210–217. [CrossRef] Zhao,Z.;Liu,X.MethodandDeviceforExtractingandEnrichingLithium.U.S.Patent9,062,385B2,23June2015. Eramet.LithiumProject:ANewGrowthDomain.2020.Availableonline:https://www.eramet.com/en/activities/development -projects/lithium-project-new-growth-domain (accessed on 10 September 2021). Duyvesteyn,W.P.C.;Sabacky,B.J.AmmoniaLeachingProcessforEscondidaCopperConcentrates.Inst.Mater.Miner.Min.1995, 104, C125–C140. Ball, D.L.; Boateng, D.A.D. Method for the Recovery of Lithium from Solutions by Electrodialysis. U.S. Patent 4,636,295, 13 January 1987. Yang,M.;Hou,J.MembranesinLithiumIonBatteries.Membranes2012,2,367–383.[CrossRef] Hoshino,T.Preliminarystudiesoflithiumrecoverytechnologyfromseawaterbyelectrodialysisusingionicliquidmembrane. Desalination 2013, 317, 11–16. [CrossRef] Liu, G.; Zhao, Z.W.; He, L.H. Highly selective lithium recovery from high Mg/Li ratio brines. Desalination 2020, 474, 114185. [CrossRef] Ammundsen, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943–956. [CrossRef] Xu,B.;Qian,D.N.;Wang,Z.Y.;Meng,Y.S.L.Recentprogressincathodematerialsresearchforadvancedlithiumionbatteries. Mater. Sci. Eng. R-Rep. 2012, 73, 51–65. [CrossRef] Liu,X.;Chen,X.;Zhao,Z.;Liang,X.EffectofNa+onLiextractionfrombrineusingLiFePO4/FePO4electrodes.Hydrometallurgy 2014, 146, 24–28. [CrossRef] Liu,X.;Chen,X.;He,L.;Zhao,Z.Studyonextractionoflithiumfromsaltlakebrinebymembraneelectrolysis.Desalination2015, 376, 35–40. [CrossRef] Zhu,X.B.;Lin,T.G.;Manning,E.;Zhang,Y.C.;Yu,M.M.;Zuo,B.;Wang,L.Z.RecentadvancesonFe-andMn-basedcathode materials for lithium and sodium ion batteries. J. Nanopart. Res. 2018, 20, 160. [CrossRef] Itoh,M.;Inaguma,Y.;Iijima,S.MethodandApparatusforExtractingLithiumbyApplyingVoltageacrossLithium-IonConducting Solid Electrolyte. U.S. Patent 5,951,843, 14 September 1999. Chang,I.-L.;Jiang,Y.-L.;Shiu,J.-Y.;Lin,J.-R.ProcessforProducingLithiumConcentratefromBrineorSeawater.U.S.Patent 6,764,584 B2, 20 July 2004. Zavahir,S.;Elmakki,T.;Gulied,M.;Ahmad,Z.;Al-Sulaiti,L.;Shon,H.K.;Chen,Y.;Park,H.;Batchelor,B.;Han,D.S.Areviewon lithium recovery using electrochemical capturing systems. Desalination 2021, 500, 31. [CrossRef] Snydacker, D.H.; Hegde, V.I.; Aykol, M.; Wolverton, C.M. Compounds for Lithium Extraction via Ion Exchange. U.S. Patent Application 2017/0217796 A1, 3 August 2017. Snydacker,D.H.LithiumExtractionwithCoatedIonExchangeParticles.U.S.Patent10,150,056B2,11December2018. Hong,H.J.;Ryu,T.;Park,I.S.;Kim,M.;Shin,J.;Kim,B.G.;Chung,K.S.Highlyporousandsurface-expandedspinelhydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chem. Eng. J. 2018, 337, 455–461. [CrossRef] Ryu,T.;Rengaraj,A.;Haldorai,Y.;Shin,J.;Choe,S.R.;Lee,G.W.;Hwang,S.K.;Han,Y.K.;Kim,B.G.;Huh,Y.S.;etal.Mechanochem- ical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater. Solid State Ion. 2017, 308, 77–83. [CrossRef] Chung,K.S.;Lee,J.C.;Kim,W.K.;Kim,S.B.;Cho,K.Y.Inorganicadsorbentcontainingpolymericmembranereservoirforthe recovery of lithium from seawater. J. Membr. Sci. 2008, 325, 503–508. [CrossRef] Park, J.; Sato, H.; Nishihama, S.; Yoshizuka, K. Lithium recovery from geothermal water by combined adsorption methods. Solvent Extr. Ion Exch. 2012, 30, 398–404. [CrossRef] Xiao, G.; Tong, K.; Zhou, L.; Xiao, J.; Sun, S.; Li, P.; Yu, J. Adsorption and desorption behavior of lithium ion in spherical PVC–MnO2 ion sieve. Ind. Eng. Chem. Res. 2012, 51, 10921–10929. [CrossRef] Park,M.J.;Nisola,G.M.;Vivas,E.L.;Limjuco,L.A.;Lawagon,C.P.;Seo,J.G.;Kim,H.;Shon,H.K.;Chung,W.-J.Mixedmatrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater. J. Membr. Sci. 2016, 510, 141–154. [CrossRef] Chung,W.-J.;Torrejos,R.E.C.;Park,M.J.;Vivas,E.L.;Limjuco,L.A.;Lawagon,C.P.;Parohinog,K.J.;Lee,S.-P.;Shon,H.K.;Kim,H. Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves. Chem. Eng. J. 2017, 309, 49–62. [CrossRef] Snydacker,D.H.;Grant,A.J.;Zarkesh,R.A.IonExchangeSystemforLithiumExtraction.U.S.Patent10,505,178B2,10Decem- ber 2019. Snydacker,D.H.;Grant,A.J.;Zarkesh,R.A.IonExchangeSystemforLithiumExtraction.U.S.Patent10,439,200B2,8October2019. Ryu,T.;Haldorai,Y.;Rengaraj,A.;Shin,J.;Hong,H.J.;Lee,G.W.;Han,Y.K.;Huh,Y.S.;Chung,K.S.RecoveryofLithiumIons from Seawater Using a Continuous Flow Adsorption Column Packed with Granulated Chitosan Lithium Manganese Oxide. Ind. Eng. Chem. Res. 2016, 55, 7218–7225. [CrossRef]

PDF Image | Recovery of Lithium from Geothermal Brines

recovery-lithium-from-geothermal-brines-070

PDF Search Title:

Recovery of Lithium from Geothermal Brines

Original File Name Searched:

energies-14-06805-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP