logo

Recovery of Lithium from Geothermal Brines

PDF Publication Title:

Recovery of Lithium from Geothermal Brines ( recovery-lithium-from-geothermal-brines )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 068

Energies 2021, 14, 6805 68 of 72 186. Torrejos, R.E.C.; Nisola, G.M.; Song, H.S.; Han, J.W.; Lawagon, C.P.; Seo, J.G.; Koo, S.; Kim, H.; Chung, W.J. Liquid-liquid extraction of lithium using lipophilic dibenzo-14-crown-4 ether carboxylic acid in hydrophobic room temperature ionic liquid. Hydrometallurgy 2016, 164, 362–371. [CrossRef] 187. Ruttinger,A.W.;Pálsdóttir,A.;Tester,J.W.;Clancy,P.AQuantitativeMetricfortheDesignofSelectiveSupercriticalCO2Extraction of Lithium from Geothermal Brine. Chemsuschem 2019, 12, 3532–3540. [CrossRef] 188. Zhu, W.B.; Jia, Y.Z.; Zhang, Q.Y.; Sun, J.H.; Jing, Y.; Li, J. The effect of ionic liquids as co-extractant with crown ether for the extraction of lithium in dichloromethane-water system. J. Mol. Liq. 2019, 285, 75–83. [CrossRef] 189. Pálsdóttir,A.;Alabi,C.A.;Thompson,J.F.H.;Tester,J.W.ValorizationofGeothermalWaters:TheDevelopmentandTestingof a Supercritical Fluid Extraction Process for the Recovery of Lithium. In Proceedings of the World Geothermal Congress 2021, Reykjavik, Iceland, 24–27 October 2021. 190. Pálsdóttir,A.;Alabi,C.A.;Tester,J.W.Characterizationof14-Crown-4EthersfortheExtractionofLithiumfromNaturalBrines: Synthesis, Solubility Measurements in Supercritical Carbon Dioxide, and Thermodynamic Modeling. Ind. Eng. Chem. Res. 2021, 60, 7926–7934. [CrossRef] 191. Huang,W.;Liu,S.C.;Liu,J.X.;Zhang,W.L.;Pan,J.M.2-Methylol-12-crown-4etherimmobilizedPolyHIPEstowardrecoveryof lithium(i). New J. Chem. 2018, 42, 16814–16822. [CrossRef] 192. Li,E.Z.;Kang,J.;Ye,P.Y.;Zhang,W.J.;Cheng,F.Q.;Yin,C.X.Aprospectivematerialforthehighlyselectiveextractionoflithium ions based on a photochromic crowned spirobenzopyran. J. Mater. Chem. 2019, 7, 903–907. [CrossRef] 193. Xu,J.C.;Pu,Z.L.;Xu,X.C.;Wang,Y.Y.;Yang,D.Y.;Zhang,T.;Qiu,F.X.SimultaneousadsorptionofLi(I)andRb(I)bydualcrown ethers modified magnetic ion imprinting polymers. Appl. Organomet. Chem. 2019, 33, e4778. [CrossRef] 194. Bai,X.;Dai,J.D.;Ma,Y.;Bian,W.B.;Pan,J.M.2-(Allyloxy)methylol-12-crown-4etherfunctionalizedpolymerbrushesfromporous PolyHIPE using UV-initiated surface polymerization for recognition and recovery of lithium. Chem. Eng. J. 2020, 380, 122386. [CrossRef] 195. Li,J.X.;Yi,H.;Wang,M.X.;Yan,F.;Zhu,Q.J.;Wang,S.H.;Li,J.X.;He,B.Q.;Cui,Z.Y.PreparationofCrown-Ether-Functionalized Polysulfone Membrane by In Situ Surface Grafting for Selective Adsorption and Separation of Li+. Chemistryselect 2020, 5, 3321–3329. [CrossRef] 196. Wang, P.; Dai, J.D.; Ma, Y.; Chen, L.Z.; Pan, J.M. Fabrication and evaluation of aminoethyl benzo-12-crown-4 functionalized polymer brushes adsorbents formed by surface-initiated ATRP based on macroporous polyHIPEs and postsynthetic modification. Chem. Eng. J. 2020, 380, 122495. [CrossRef] 197. Hu,F.;Song,T.Applicationoffunctionalizedetherinlithiumionbatteries.RSCAdv.2017,7,54203–54212.[CrossRef] 198. Gohil,H.;Chatterjee,S.;Yadav,S.;Suresh,E.;Paital,A.R.AnlonophoreforHighLithiumLoadingandSelectiveCapturefrom Brine. Inorg. Chem. 2019, 58, 7209–7219. [CrossRef] 199. Zante,G.;Boltoeva,M.;Masmoudi,A.;Barillon,R.;Trebouet,D.Highlyselectivetransportoflithiumacrossasupportedliquid membrane. J. Fluor. Chem. 2020, 236, 109593. [CrossRef] 200. Fernelius,W.C.;Vanuitert,L.G.Therelativestabilityofthealkalimetalchelatesofdibenzoylmethane.ACTAChem.Scand.1954, 8, 1726. [CrossRef] 201. Granata,G.;Pagnanelli,F.;Moscardini,E.;Takacova,Z.;Havlik,T.;Toro,L.Simultaneousrecyclingofnickelmetalhydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. J. Power Sources 2012, 212, 205–211. [CrossRef] 202. Guo, F.Q.; Nishihama, S.; Yoshizuka, K. Selective recovery of valuable metals from spent Li-ion batteries using solvent- impregnated resins. Environ. Technol. 2013, 34, 1307–1317. [CrossRef] 203. Ghorbanzadeh, M.; Gorzin, H.; Eshtehardi, H.A. Precipitation and solvent extraction of magnesium from lithium-chloride solution by di-(2-ethylhexyl) phosphoric acid in the presence of lactic acid as a complexing agent. Mater. Res. Express 2018, 5, 086512. [CrossRef] 204. Yang,Y.;Liu,F.H.;Song,S.L.;Tang,H.H.;Ding,S.T.;Sun,W.;Lei,S.Y.;Xu,S.M.Recoveringvaluablemetalsfromtheleaching liquor of blended cathode material of spent lithium-ion battery. J. Environ. Chem. Eng. 2020, 8, 104358. [CrossRef] 205. El-Eswed,B.;Sunjuk,M.;Al-Degs,Y.;Shtaiwi,A.SolventExtractionofLi+usingOrganophosphorusLigandsinthePresenceof Ammonia. Sep. Sci. Technol. 2014, 49, 1342–1348. [CrossRef] 206. Su,H.;Li,Z.;Zhang,J.;Liu,W.S.;Zhu,Z.W.;Wang,L.N.;Qi,T.CombiningSelectiveExtractionandEasyStrippingofLithium Using a Ternary Synergistic Solvent Extraction System through Regulation of Fe3+ Coordination. ACS Sustain. Chem. Eng. 2020, 8, 1971–1979. [CrossRef] 207. Su,H.;Li,Z.;Zhang,J.;Zhu,Z.;Wang,L.;Qi,T.Recoveryoflithiumfromsaltlakebrineusingamixedternarysolventextraction system consisting of TBP, FeCl3 and P507. Hydrometallurgy 2020, 197, 105487. [CrossRef] 208. Pranolo,Y.;Zhu,Z.W.;Cheng,C.Y.SeparationoflithiumfromsodiuminchloridesolutionsusingSSXsystemswithLIX54and Cyanex 923. Hydrometallurgy 2015, 154, 33–39. [CrossRef] 209. Zhang,L.C.;Li,L.J.;Rui,H.M.;Shi,D.;Peng,X.W.;Ji,L.M.;Song,X.X.Lithiumrecoveryfromeffluentofspentlithiumbattery recycling process using solvent extraction. J. Hazard Mater. 2020, 398, 122840. [CrossRef] 210. Narisako,M.;Yamaoka,T.;Kobayashi,D.;Higuchi,N.MethodforSeparatingandRecoveringNickelandLithium.U.S.Patent 8,444,744 B2, 21 May 2013.

PDF Image | Recovery of Lithium from Geothermal Brines

recovery-lithium-from-geothermal-brines-068

PDF Search Title:

Recovery of Lithium from Geothermal Brines

Original File Name Searched:

energies-14-06805-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP