
PDF Publication Title:
Text from PDF Page: 067
Energies 2021, 14, 6805 67 of 72 157. PurLucidTreatmentSolutionsInc.PurLucidTreatmentSolutions.2020.Availableonline:http://www.purlucid.com/index.php /about. (accessed on 15 September 2020). 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. Fujii,K.DependenceofAdsorptiveCapabilityforLithiumIonsinMolten-SaltonSurface-PropertiesofActivatedAlumina.J.Am. Ceram. Soc. Jpn. 1994, 102, 1097–1101. [CrossRef] Fujii,K.Selectiveadsorptionoflithiumionsfrommolten-saltbyactivatedalumina.J.Am.Ceram.Soc.Jpn.1994,102,902–907. [CrossRef] Luo,M.B.;Li,B.P.;Yang,Z.;Liu,W.;Sun,Y.Z.Determinationoftracelithiuminuraniumcompoundsbyadsorptiononactivated alumina using a micro-column method. Anal. Sci. 2008, 24, 1013–1017. [CrossRef] Harrison,S.SelectiveRemovalofSilicafromSilicaContainingBrines.U.S.Patent8,597,521B1,3December2013. Harrison,S.SelectiveRemovalofSilicafromSilicaContainingBrines.U.S.Patent9,051,827B1,9June2015. Harrison,S.;Sharma,C.V.K.;Conley,M.S.PorousActivatedAluminaBasedSorbentforLithiumExtraction.U.S.Patent9,764,318 B2, 19 September 2017. Harrison,S.;Sharma,C.V.K.;Conley,M.S.PorousActivatedAluminaBasedSorbentforLithiumExtraction.U.S.Patent10,328,424 B2, 25 June 2019. Ma, Z.B.; Zhang, S.; Zhang, H.R.; Cheng, F.Q. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid-alkali-based alternate method. J. Clean. Prod. 2019, 230, 302–313. [CrossRef] Snydacker,D.H.;Hegde,V.I.;Aykol,M.;Wolverton,C.ComputationalDiscoveryofLi-M-OIonExchangeMaterialsforLithium Extraction from Brines. Chem. Mater. 2018, 30, 6961–6968. [CrossRef] Abe,M.;Hayashi,K.Syntheticinorganicion-exchangematerials.XXXIV.Selectiveseparationoflithiumfromseawaterbytin(IV) antimonate cation exchanger. Hydrometallurgy 1984, 12, 83–93. [CrossRef] Abe,M.;Chitrakar,R.Syntheticinorganicion-exchangematerials.XLV.Recoveryoflithiumfromseawaterandhydrothermal water by titanium(IV) antimonate cation exchanger. Hydrometallurgy 1987, 19, 117–128. [CrossRef] Alberti, G.; Massucci, M.A. Crystalline insoluble acid salts of tetravalent metals. 9. Thorium arsenate, a new inorganic ion exchanger specific for lithium. J. Inorg. Nucl. Chem. 1970, 32, 1719–1727. [CrossRef] Ho,P.C.;Nelson,F.;Kraus,K.A.Adsorptiononinorganicmaterials.7.HydroustinoxideandSnO2-filledcarbon.J.Chromatogr. 1978, 147, 263–269. [CrossRef] Rotuska,K.;Chmielewski,T.Growingroleofsolventextractionincopperoresprocessing.Physicochem.Probl.Min.Process.2008, 42, 29–36. Fleitlikh,I.Y.;Grigorieva,N.A.;Logutenko,O.A.ExtractionofNon-FerrousMetalsandIronwithSystemsbasedonBis(2,4,4- Trimethylpentyl) Dithiophosphinic Acid (CYANEX 301), A Review. Solvent Extr. Ion Exch. 2018, 36, 1–21. [CrossRef] McKinley,C.;Ghahreman,A.Hydrochloricacidregenerationinhydrometallurgicalprocesses:Areview.Miner.Process.Extr. Met. 2018, 127, 157–168. [CrossRef] Perez,J.P.H.;Folens,K.;Leus,K.;Vanhaecke,F.;VanderVoort,P.;DuLaing,G.Progressinhydrometallurgicaltechnologiesto recover critical raw materials and precious metals from low-concentrated streams. Resour. Conserv. Recycl. 2019, 142, 177–188. [CrossRef] Nguyen,V.N.H.;Nguyen,T.H.;Lee,M.S.ReviewontheComparisonoftheChemicalReactivityofCyanex272,Cyanex301and Cyanex 302 for Their Application to Metal Separation from Acid Media. Metals 2020, 10, 1105. [CrossRef] Solvay.SolventExtraction.Solvey:Alorton,IL,USA,2020.Availableonline:https://www.solvay.com/en/solutions-market/m ining/solvent-extraction (accessed on 1 January 2020). Spasic, A.M.; Manojlovic, V.; Jovanovic, M. Solvent extraction and entrainment problem. Met. Mater. Eng. 2020, 26, 163–175. [CrossRef] Pramanik,B.K.;Nghiem,L.D.;Hai,F.I.Extractionofstrategicallyimportantelementsfrombrines:Constraintsandopportunities. Water Res. 2020, 168, 115149. [CrossRef] Nguyen,T.H.;Lee,M.S.AReviewontheSeparationofLithiumIonfromLeachLiquorsofPrimaryandSecondaryResourcesby Solvent Extraction with Commercial Extractants. Processes 2018, 6, 55. [CrossRef] Lee,D.;Taylor,W.;McDowell,W.;Drury,J.Solventextractionoflithium.J.Inorg.Nucl.Chem.1968,30,2807–2821.[CrossRef] Swain, B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: A review. J. Chem. Technol. Biotechnol. 2016, 91, 2549–2562. [CrossRef] Li,W.;Shi,C.;Zhou,A.;He,X.;Sun,Y.;Zhang,J.ApositivelychargedcompositenanofiltrationmembranemodifiedbyEDTA for LiCl/MgCl2 separation. Sep. Purif. Technol. 2017, 186, 233–242. [CrossRef] Zhou,Z.Y.;Fan,J.H.;Liu,X.T.;Hu,Y.F.;Wei,X.Y.;Hu,Y.L.;Wang,W.;Ren,Z.Q.Recoveryoflithiumfromsalt-lakebrinesusing solvent extraction with TBP as extractant and FeCl3 as co-extraction agent. Hydrometallurgy 2020, 191, 105244. [CrossRef] Bartsch,R.A.;Czech,B.P.;Kang,S.I.;Stewart,L.E.;Walkowiak,W.;Charewicz,W.A.;Heo,G.S.;Son,B.Highlithiumselectivity in competitive alkali-metal solvent-extraction by lipophilic crown carboxylic-acids. J. Am. Chem. Soc. 1985, 107, 4997–4998. [CrossRef] Abbott,A.P.;Frisch,G.;Hartley,J.;Ryder,K.S.Processingofmetalsandmetaloxidesusingionicliquids.GreenChem.2011,13, 471–481. [CrossRef]PDF Image | Recovery of Lithium from Geothermal Brines
PDF Search Title:
Recovery of Lithium from Geothermal BrinesOriginal File Name Searched:
energies-14-06805-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |