
PDF Publication Title:
Text from PDF Page: 019
Membranes 2021, 11, 175 19 of 20 30. Zabolotsky, V.I.; Korzhov, A.N.; But, A.Y.; Melnikov, S.S. Reagent-Free Electromembrane Process for Decarbonization of Natural Water. Membr. Membr. Technol. 2019, 1, 341–346. [CrossRef] 31. Apel, P.Y.; Bobreshova, O.V.; Volkov, A.V.; Volkov, V.V.; Nikonenko, V.V.; Stenina, I.A.; Filippov, A.N.; Yampolskii, Y.P.; Yaroslavtsev, A.B. Prospects of Membrane Science Development. Membr. Membr. Technol. 2019, 1, 45–63. [CrossRef] 32. Drioli, E.; Di Profio, G.; Curcio, E. Membrane-Assisted Crystallization Technology; Advances in Chemical and Process Engineering; Imperial Colledge Press: London, UK, 2015; Volume 2, p. 229. 33. Quist-Jensen, C.A.; Macedonio, F.; Horbez, D.; Drioli, E. Reclamation of sodium sulfate from industrial wastewater by using membrane distillation and membrane crystallization. Desalination 2017, 401, 112–119. [CrossRef] 34. Perrotta, M.L.; Macedonio, F.; Tocci, E.; Giorno, L.; Drioli, E.; Gugliuzza, A. Graphene stimulates the nucleation and growth rate of NaCl crystals from hypersaline solution via membrane crystallization. Environ. Sci. Water Res. Technol. 2020, 6, 1723–1736. [CrossRef] 35. Di Profio, G.; Curcio, E.; Cassetta, A.; Lamba, D.; Drioli, E. Membrane crystallization of lysozyme: Kinetic aspects. J. Cryst. Growth 2003, 257, 359–369. [CrossRef] 36. Drioli, E.; Ali, A.; Macedonio, F. Membrane distillation: Recent developments and perspectives. Desalination 2015, 356, 56–84. [CrossRef] 37. Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [CrossRef] [PubMed] 38. Khayet, M.; Cojocaru, C. Air gap membrane distillation: Desalination, modeling and optimization. Desalination 2012, 287, 138–145. [CrossRef] 39. Cipollina, A.; Di Sparti, M.G.; Tamburini, A.; Micale, G. Development of a membrane distillation module for solar energy seawater desalination. Chem. Eng. Res. Des. 2012, 90, 2101–2121. [CrossRef] 40. Dzyubenko, V.G. Scientific and Technological Bases of Industrial Production of Membranes and Filter Elements for Separation of Liquid Media. Membr. Membr. Technol. 2020, 2, 217–220. [CrossRef] 41. Cerneaux,S.;Struz ̇yn ́ska,I.;Kujawski,W.M.;Persin,M.;Larbot,A.Comparisonofvariousmembranedistillationmethodsfor desalination using hydrophobic ceramic membranes. J. Membr. Sci. 2009, 337, 55–60. [CrossRef] 42. Kujawa, J.; Kujawski, W. Driving force and activation energy in air-gap membrane distillation process. Chem. Pap. 2015, 69, 1438–1444. [CrossRef] 43. Novitskii, E.G.; Golubev, G.S.; Grushevenko, E.A.; Vasilevskii, V.P.; Volkov, A.V. Process of Concentrating of Highly Mineralized Waters in an Air-Gap Membrane Distiller. Membr. Membr. Technol. 2019, 1, 381–385. [CrossRef] 44. Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A.P.; Tong, T.; Warsinger, D.M.; Elimelech, M. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196. [CrossRef] 45. Volkov, A.V.; Novitsky, E.G.; Borisov, I.L.; Vasilevsky, V.P.; Volkov, V.V. Porous condenser for thermally driven membrane processes: Gravity-independent operation. Sep. Purif. Technol. 2016, 171, 191–196. [CrossRef] 46. Kalmykov, D.O.; Makaev, S.V.; Golubev, G.S.; Hoang, T.L.; Nguyen, T.D.; Volkov, A.V. Simulation of Desalination of a Sodium Chloride Aqueous Solution by Membrane Distillation with a Porous Condenser. Membr. Membr. Technol. 2020, 2, 407–416. [CrossRef] 47. Golubev, G.; Eremeev, I.; Makaev, S.; Shalygin, M.; Vasilevsky, V.; He, T.; Drioli, E.; Volkov, A. Thin-film distillation coupled with membrane condenser for brine solutions concentration. Desalination 2021, 503, 114956. [CrossRef] 48. Volkov, V.V.; Borisov, I.L.; Vasilevsky, V.P.; Novitsky, E.G.; Volkov, A.V. Membrane Distillation Module and Method of Mineralized Water Desalination. RU Patent RU2612701C1, 3 November 2015. 49. Gryta, M. Concentration of NaCl solution by membrane distillation integrated with crystallization. Sep. Sci. Technol. 2002, 37, 3535–3558. [CrossRef] 50. Al-Jibbouri, S.; Ulrich, J. The influence of impurities on crystallization kinetics of sodium chloride. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2001, 36, 1365–1375. [CrossRef] 51. Naidu, G.; Jeong, S.; Choi, Y.; Vigneswaran, S. Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential. J. Membr. Sci. 2017, 524, 565–575. [CrossRef] 52. Chen, G.; Lu, Y.; Krantz, W.B.; Wang, R.; Fane, A.G. Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. J. Membr. Sci. 2014, 450, 1–11. [CrossRef] 53. Gryta, M. Direct Contact Membrane Distillation with Crystallization Applied to NaCl Solutions. Chem. Pap. 2002, 56, 14–19. 54. Luo, L.; Zhao, J.; Chung, T.-S. Integration of membrane distillation (MD) and solid hollow fiber cooling crystallization (SHFCC) systems for simultaneous production of water and salt crystals. J. Membr. Sci. 2018, 564, 905–915. [CrossRef] 55. Xiao, Z.; Zheng, R.; Liu, Y.; He, H.; Yuan, X.; Ji, Y.; Li, D.; Yin, H.; Zhang, Y.; Li, X.-M.; et al. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. Water Res. 2019, 155, 152–161. [CrossRef] 56. Yun, Y.; Ma, R.; Zhang, W.; Fane, A.; Li, J. Direct contact membrane distillation mechanism for high concentration NaCl solutions. Desalination 2006, 188, 251–262. [CrossRef] 57. Tun, C.M.; Fane, A.G.; Matheickal, J.T.; Sheikholeslami, R. Membrane distillation crystallization of concentrated salts—flux and crystal formation. J. Membr. Sci. 2005, 257, 144–155. [CrossRef]PDF Image | Process of Lithium Recovery from Geothermal Brine
PDF Search Title:
Process of Lithium Recovery from Geothermal BrineOriginal File Name Searched:
membranes-11-00175-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |