
PDF Publication Title:
Text from PDF Page: 018
Membranes 2021, 11, 175 18 of 20 References 1. U.S. Geological Survey, Mineral Commodity Summaries. Available online: https://www.usgs.gov/centers/nmic/lithium- statistics-and-information (accessed on 24 December 2020). 2. Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [CrossRef] 3. Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [CrossRef] 4. Martinet, S.; Le Cras, F.; Rouault, H.; Poinso, J.Y. Nouvelles voies dans les accumulateurs lithium et les électrolytes de batteries. Clefs CEA 2004, 50–51, 130. 5. Tarascon, J.M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [CrossRef] [PubMed] 6. Kudryavtsev, P.G. Lithium: Global reserves and application prospects. Altern. Energy Ecol. 2016, 13–14, 72–88. [CrossRef] 7. Garrett, D.E. Handbook of Lithium and Natural Calcium Chloride; Elsevier: Amsterdam, The Netherlands, 2004. 8. Christian, M.L.; Aguey-Zinsou, K.F. Core–shell strategy leading to high reversible hydrogen storage capacity for NaBH4. ACS nano 2012, 6, 7739–7751. [CrossRef] 9. Coplen, T.B.; Hopple, J.A.; Bohlke, J.K.; Reiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D., Jr.; Revesz, K.M.; et al. Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2002; Volume 1. [CrossRef] 10. Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [CrossRef] 11. Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [CrossRef] 12. Munk, L.; Hynek, S.; Bradley, D.C.; Boutt, D.; Labay, K.A.; Jochens, H. Lithium Brines: A Global Perspective, Chapter 14. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists, Incorporated: Littleton, CO, USA, 2016; pp. 339–365. 13. Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [CrossRef] 14. Peiró, L.T.; Méndez, G.V.; Ayres, R.U. Lithium: Sources, production, uses, and recovery outlook. Jom 2013, 65, 986–996. [CrossRef] 15. Lawagon, C.P.; Nisola, G.M.; Mun, J.; Tron, A.; Torrejos, R.E.C.; Seo, J.G.; Kim, H.; Chung, W.J. Adsorptive Li+ mining from liquid resources by H2TiO3: Equilibrium, kinetics, thermodynamics, and mechanisms. J. Ind. Eng. Chem. 2016, 35, 347–356. [CrossRef] 16. Ji, P.Y.; Ji, Z.Y.; Chen, Q.B.; Liu, J.; Zhao, Y.Y.; Wang, S.Z.; Li, F.; Yuan, J.S. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep. Purif. Technol. 2018, 207, 1–11. [CrossRef] 17. An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 2012, 117, 64–70. [CrossRef] 18. Sun, S.; Yu, X.; Li, M.; Duo, J.; Guo, Y.; Deng, T. Green recovery of lithium from geothermal brine based on a novel lithium iron phosphate electrochemical technique. J. Clean. Prod. 2020, 247, 119178. [CrossRef] 19. Tang, D.; Zhou, D.; Zhou, J.; Zhang, P.; Zhang, L.; Xia, Y. Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag. Hydrometallurgy 2015, 157, 90–96. [CrossRef] 20. Falina, I.V.; Demina, O.A.; Zabolotsky, I.V. The Influence of the Counterion Nature on the Electroosmotic Transport of Free Solvent through an MK-40 Ion-Exchange Membrane. Membr. Membr. Technol. 2019, 1, 81–87. [CrossRef] 21. Vasil’eva, V.I.; Akberova, E.M.; Kostylev, D.V.; Tzkhai, A.A. Diagnostics of the Structural and Transport Properties of an Anion- Exchange Membrane MA-40 after Use in Electrodialysis of Mineralized Natural Waters. Membr. Membr. Technol. 2019, 1, 153–167. [CrossRef] 22. Song, J.F.; Nghiem, L.D.; Li, X.M.; He, T. Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol. 2017, 3, 593–597. [CrossRef] 23. Xing, L.; Song, J.; Li, Z.; Liu, J.; Huang, T.; Dou, P.; Chen, Y.; Li, X.-M.; He, T. Solvent stable nanoporous poly (ethylene-co-vinyl alcohol) barrier membranes for liquid-liquid extraction of lithium from a salt lake brine. J. Membr. Sci. 2016, 520, 596–606. [CrossRef] 24. Huang, T.; Song, J.; He, S.; Li, T.; Li, X.M.; He, T. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly (ether ether ketone) membrane. J. Membr. Sci. 2019, 589, 117273. [CrossRef] 25. Ryabtsev, A.D. Hydromineral raw materials—An inexhaustible source of lithium in the XXI century. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2004, 307, 64–70. (In Russian) 26. Samoilov, V.I. Natural mineralized waters as an important industrial source of lithium and methods of their halurgic processing. Min. Inf. Anal. Bull. 2006, 70–76. (In Russian) 27. Prisyazhniuk, V.A. Physico-chemical principles of preventing salts crystallization on heat-exchange surfaces. Appl. Therm. Eng. 2009, 29, 3182–3188. [CrossRef] 28. Rosenberg, Y.O.; Reznik, I.J.; Zmora-Nahum, S.; Ganor, J. The effect of pH on the formation of a gypsum scale in the presence of a phosphonate antiscalant. Desalination 2012, 284, 207–220. [CrossRef] 29. Yuchi, A.; Gotoh, Y.; Itoh, S. Potentiometry of effective concentration of polyacrylate as scale inhibitor. Anal. Chim. Acta 2007, 594, 199–203. [CrossRef] [PubMed]PDF Image | Process of Lithium Recovery from Geothermal Brine
PDF Search Title:
Process of Lithium Recovery from Geothermal BrineOriginal File Name Searched:
membranes-11-00175-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |