logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 456

Lanthanides in Luminescent Thermometry Chapter 281 421 Reif, F., 1965. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York. Ren, M., Brites, C.D., Bao, S.-S., Ferreira, R.A., Zheng, L.-M., Carlos, L.D., 2015. A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer. J. Mater. Chem. C 3, 8480–8484. Robertson, D.G., Lee, J.H., 2002. On the use of constraints in least squares estimation and control. Automatica 38, 1113–1123. Rocha, U., Jacinto da Silva, C., Ferreira Silva, W., Guedes, I., Benayas, A., Mart ́ınez Maestro, L., Acosta Elias, M., Bovero, E., van Veggel, F.C.J.M., Sole, J.G., Jaque, D., 2013. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano 7, 1188–1199. Rocha, U., Kumar, K.U., Jacinto, C., Ramiro, J., Caamano, A.J., Sole, J.G., Jaque, D., 2014a. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl. Phys. Lett. 104, 053703. Rocha, U., Kumar, K.U., Jacinto, C., Villa, I., Sanz-Rodr ́ıguez, F., Iglesias de la Cruz, M.C., Juarranz, A., Carrasco, E., van Veggel, F.C., Bovero, E., Sole, J.G., Jaque, D., 2014b. Neodymium-doped LaF3 nanoparticles for fluorescence bioimaging in the second biological window. Small 10, 1141–1154. Rodrigues, C.V., Luz, L.L., Dutra, J.D., Junior, S.A., Malta, O.L., Gatto, C.C., Streit, H.C., Freire, R.O., Wickleder, C., Rodrigues, M.O., 2014. Unusual photoluminescence properties of the 3D mixed-lanthanide-organic frameworks induced by dimeric structures: a theoretical and experimental approach. Phys. Chem. Chem. Phys. 16, 14858–14866. Rodrigues, M., Pin ̃ol, R., Antorrena, G., Brites, C.D.S., Silva, N.J.O., Murillo, J.L., Cases, R., D ́ıez, I., Palacio, F., Torras, N., Plaza, J.A., Perez-Garc ́ıa, L., Carlos, L.D., Milla ́n, A., 2016. Implementing thermometry on silicon surfaces functionalized by lanthanide-doped self-assembled polymer monolayers. Adv. Funct. Mater. 26, 200–209. http://dx.doi.org/ 10.1002/adfm.201503889. Rohani, S., Quintanilla, M., Tuccio, S., De Angelis, F., Cantelar, E., Govorov, A.O., Razzari, L., Vetrone, F., 2015. Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanor- ods. Adv. Opt. Mater. 3, 1606–1613. Ross, D., Gaitan, M., Locascio, L.E., 2001. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73, 4117–4123. Sa ̈ıdi, E., Samson, B., Aigouy, L., Volz, S., Low, P., Bergaud, C., Mortier, M., 2009. Scanning thermal imaging by near-field fluorescence spectroscopy. Nanotechnology 20, 115703. Sa ̈ıdi, E., Babinet, N., Lalouat, L., Lesueur, J., Aigouy, L., Volz, S., Labeguerie-Egea, J., Mortier, M., 2011. Tuning temperature and size of hot spots and hot-spot arrays. Small 7, 259–264. Saleh, B.E., Teich, M.C., Saleh, B.E., 1991. Fundamentals of Photonics. Wiley, New York. Samulski, T., Shrivastava, P.N., 1980. Photo-luminescent thermometer probes—temperature- measurements in microwave fields. Science 208, 193–194. Samulski, T.V., Chopping, P.T., Haas, B., 1982. Photo-luminescent thermometry based on europium-activated calcium sulfide. Phys. Med. Biol. 27, 107–114. Samy, R., Glawdel, T., Ren, C.L., 2008. Method for microfluidic whole-chip temperature mea- surement using thin-film poly(dimethylsiloxane)/rhodamine B. Anal. Chem. 80, 369–375. Sanchez, C., Julia ́n-Lo ́pez, B., Belleville, P., Popall, M., 2005. Applications of hybrid organic– inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592. Sanchez, C., Belleville, P., Popall, M., Nicole, L., 2011. Applications of advanced hybrid organic– inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40, 696–753. Sato, S., Yamaguchi, R., Nose, T., 1989. Temperature sensors by multicolor-fluorescent films of rare earth chelate compounds. IEICE J. C J72-C2, 906–911 (in Japanese).

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-456

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP