logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 455

420 Handbook on the Physics and Chemistry of Rare Earths Narberhaus, F., Waldminighaus, T., Chowdhury, S., 2006. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16. Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., Uchiyama, S., 2012. Intracellular temper- ature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705. Pandey, A., Rai, V.K., 2013. Optical thermometry using FIR of two close lying levels of different ions in Y2O3:Ho3+-Tm3+-Yb3+ phosphor. Appl. Phys. B 113, 221–225. Paviolo, C., Clayton, A.H., McArthur, S.L., Stoddart, P.R., 2013. Temperature measurement in the microscopic regime: a comparison between fluorescence lifetime- and intensity-based methods. J. Microsc. 250, 179–188. Peng, H., Stich, M.I., Yu, J., Sun, L.N., Fischer, L.H., Wolfbeis, O.S., 2010a. Luminescent Europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv. Mater. 22, 716–719. Peng, H.S., Huang, S.H., Wolfbeis, O.S., 2010b. Ratiometric fluorescent nanoparticles for sensing temperature. J. Nanopart. Res. 12, 2729–2733. Pereira, A.F., Kumar, K.U., Silva, W.F., Santos, W.Q., Jaque, D., Jacinto, C., 2015. Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers. Sens. Actuators B: Chem. 213, 65–71. Perigo, E.A., Hemery, G., Sandre, O., Ortega, D., Garaio, E., Plazaola, F., Teran, F.J., 2015. Fun- damentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302. Perpin ̃a, X., Jordà, X., Mestres, N., Vellvehi, M., Godignon, P., Millan, J., von Kiedrowski, H., 2004. Internal infrared laser deflection system: a tool for power device characterization. Meas. Sci. Technol. 15, 1011–1018. Pietsch, C., Schubert, U.S., Hoogenboom, R., 2011. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chem. Commun. 47, 8750–8765. Pin ̃ol, R., Brites, C.D.S., Bustamante, R., Mart ́ınez, A., Silva, N.J.O., Murillo, J.L., Cases, R., Carrey, J., Estepa, C., Sosa, C., Palacio, F., Carlos, L.D., Milla ́n, A., 2015. Joining time- resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. ACS Nano 9, 3134–3142. Qiao, J., Chen, C.F., Qi, L., Liu, M.R., Dong, P., Jiang, Q., Yang, X.Z., Mu, X.Y., Mao, L.Q., 2014. Intracellular temperature sensing by a ratiometric fluorescent polymer thermometer. J. Mater. Chem. B 2, 7544–7550. Quintanilla, M., Cantarelli, I.X., Pedroni, M., Speghini, A., Vetrone, F., 2015. Intense ultraviolet upconversion in water dispersible SrF2:Tm3+, Yb3+ nanoparticles: the effect of the environ- ment on light emissions. J. Mater. Chem. C 3, 3108–3113. Quintanilla, M., Benayas, A., Naccache, R., Vetrone, F., 2016. Luminescent nanothermometry with lanthanide-doped nanoparticles. In: Carlos, L.D., Palacio, F. (Eds.), Thermometry at the Nanoscale: Techniques and Selected Applications, vol. 38. The Royal Society of Chemistry, Oxfordshire, pp. 124–166 (Chapter 5). Rabhiou, A., Feist, J., Kempf, A., Skinner, S., Heyes, A., 2011. Phosphorescent thermal history sensors. Sens. Actuators A: Phys. 169, 18–26. Rao, X., Song, T., Gao, J., Cui, Y., Yang, Y., Wu, C., Chen, B., Qian, G., 2013. A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J. Am. Chem. Soc. 135, 15559–15564. Reddy, L.H., Arias, J.L., Nicolas, J., Couvreur, P., 2012. Magnetic nanoparticles: design and char- acterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-455

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP