logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 454

Lanthanides in Luminescent Thermometry Chapter 281 419 Maldague, X., Marinetti, S., 1996. Pulse phase infrared thermography. J. Appl. Phys. 79, 2694–2698. Malta, O.L., 1997. Ligand-rare-earth ion energy transfer in coordination compounds. A theoretical approach. J. Lumin. 71, 229–236. Malta, O.L., 2008. Mechanisms of non-radiative energy transfer involving lanthanide ions revis- ited. J. Non Cryst. Solids 354, 4770–4776. Malta, O.L., Carlos, L.D., 2003. Intensities of 4f–4f transitions in glass materials. Quim. Nova 26, 889–895. Malta, O.L., Silva, F.R.G.E., 1998. A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions. Spectrochim. Acta A 54, 1593–1599. Malta, O.L., Brito, H.F., Menezes, J.F.S., Silva, F., Alves, S., Farias, F.S., deAndrade, A.V.M., 1997. Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)(3) 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. J. Lumin. 75, 255–268. Mao, H.B., Yang, T.L., Cremer, P.S., 2002. A microfluidic device with a linear temperature gra- dient for parallel and combinatorial measurements. J. Am. Chem. Soc. 124, 4432–4435. Marciniak, Ł., Bednarkiewicz, A., Stefanski, M., Tomala, R., Hreniak, D., Strek, W., 2015. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd3+ to Yb3+ energy transfer. Phys. Chem. Chem. Phys. 17, 24315. McCabe, K.M., Hernandez, M., 2010. Molecular thermometry. Pediatr. Res. 67, 469–475. McLaurin, E.J., Bradshaw, L.R., Gamelin, D.R., 2013. Dual-emitting nanoscale temperature sen- sors. Chem. Mater. 25, 1283–1292. McNichols, R.J., Gowda, A., Kangasniemi, M., Bankson, J.A., Price, R.E., Hazle, J.D., 2004. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg. Med. 34, 48–55. Mecklenburg, M., Hubbard, W.A., White, E.R., Dhall, R., Cronin, S.B., Aloni, S., Regan, B.C., 2015. Nanoscale temperature mapping in operating microelectronic devices. Science 347, 629–632. Meert, K.W., Morozov, V.A., Abakumov, A.M., Hadermann, J., Poelman, D., Smet, P.F., 2014. Energy transfer in Eu3+ doped scheelites: use as thermographic phosphor. Opt. Express 22, A961–A972. Mikkelsen, R.B., Wallach, D.F.H., 1977. Temperature sensitivity of erythrocyte-membrane poten- tial as determined by cyanine dye fluorescence. Cell Biol. Int. Rep. 1, 51–55. Milla ́n, J., Godignon, P., Perpin ̃a, X., Perez-Tomas, A., Rebollo, J., 2014. A survey of wide band- gap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163. Milla ́n, A., Carlos, L.D., Brites, C.D.S., Silva, N.J.O., Pin ̃ol, R., Palacio, F., 2016. Organic– inorganic hybrids thermometry. In: Carlos, L.D., Palacio, F. (Eds.), Thermometry at the Nanoscale: Techniques and Selected Applications, vol. 38. The Royal Society of Chemistry, Oxfordshire, pp. 237–272 (Chapter 8). Miyata, K., Konno, Y., Nakanishi, T., Kobayashi, A., Kato, M., Fushimi, K., Hasegawa, Y., 2013. Chameleon luminophore for sensing temperatures: control of metal-to-metal and energy back transfer in lanthanide coordination polymers. Angew. Chem. Int. Ed. 52, 6413–6416. Mott, N.F., 1938. On the absorption of light by crystals. Proc. R. Soc. Lond. A Math. Phys. Sci. 167, 0384–0391. Mura, S., Nicolas, J., Couvreur, P., 2013. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-454

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP