logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 453

418 Handbook on the Physics and Chemistry of Rare Earths Li, Z.Q., Li, P., Xu, Q.Q., Li, H.R., 2015. Europium(III)-beta-diketonate complex-containing nanohybrid luminescent pH detector. Chem. Commun. 51, 10644–10647. Lima, P.P., Ferreira, R.A.S., Freire, R.O., Paz, F.A.A., Fu, L.S., Alves, S., Carlos, L.D., Malta, O.L., 2006. Spectroscopic study of a UV-photostable organic–inorganic hybrids incorporating an Eu3+ beta-diketonate complex. ChemPhysChem 7, 735–746. Lima, P.P., Paz, F.A.A., Ferreira, R.A.S., de Zea Bermudez, V., Carlos, L.D., 2009. Ligand-assisted rational design and supramolecular tectonics toward highly luminescent Eu3+-containing organic–inorganic hybrids. Chem. Mater. 21, 5099–5111. Liu, G., 2015. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 44, 1635–1652. Liu, W.J., Yang, B.Z., 2007. Thermography techniques for integrated circuits and semiconductor devices. Sens. Rev. 27, 298–309. Liu, Y., Qian, G.D., Wang, Z.Y., Wang, M.Q., 2005. Temperature-dependent luminescent proper- ties of Eu-Tb complexes synthesized in situ in gel glass. Appl. Phys. Lett. 86, 071907. Liu, T.C., Huang, Z.L., Wang, H.Q., Wang, J.H., Li, X.Q., Zhao, Y.D., Luo, Q.M., 2006. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe. Anal. Chim. Acta 559, 120–123. Liu, H.X., Sun, W.Q., Xiang, A., Shi, T.W., Chen, Q., Xu, S.Y., 2012. Towards on-chip time- resolved thermal mapping with micro-/nanosensor arrays. Nanoscale Res. Lett. 7, 1–6. Liu, Y.S., Tu, D.T., Zhu, H.M., Chen, X.Y., 2013. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958. Liu, J., Guo, X.D., Hu, R., Xu, J., Wang, S.Q., Li, S.Y., Li, Y., Yang, G.Q., 2015. Intracellular fluorescent temperature probe based on triarylboron substituted poly N-isopropylacrylamide and energy transfer. Anal. Chem. 87, 3694–3698. Lojpur, V., Nikolic ́, M.G., Mancic, L., Milosevic, O., Dramic ́anin, M.D., 2013. Y2O3:Yb, Tm and Y2O3:Yb, Ho powders for low-temperature thermometry based on up-conversion fluores- cence. Ceram. Int. 39, 1129–1134. Lojpur, V., Nikolic ́, M.G., Dramic ́anin, M.D., 2014. Luminescence thermometry below room tem- perature via up-conversion emission of Y2O3:Yb3+, Er3+ nanophosphors. J. Appl. Phys. 115, 203106. L€ow, P., Kim, B., Takama, N., Bergaud, C., 2008. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 4, 908–914. Lowell, B.B., Spiegelman, B.M., 2000. Towards a molecular understanding of adaptive thermo- genesis. Nature 404, 652–660. Maestro, L.M., Rodr ́ıguez, E.M., Rodr ́ıguez, F.S., Iglesias de la Cruz, M.C., Juarranz, A., Naccache, R., Vetrone, F., Jaque, D., Capobianco, J.A., Sole, J.G., 2010a. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 10, 5109–5115. Maestro, L.M., Rodriguez, E.M., Vetrone, F., Naccache, R., Ramirez, H.L., Jaque, D., Capobianco, J.A., Sole, J.G., 2010b. Nanoparticles for highly efficient multiphoton fluores- cence bioimaging. Opt. Express 18, 23544–23553. Maestro, L.M., Jacinto, C., Silva, U.R., Vetrone, F., Capobianco, J.A., Jaque, D., Sole, J.G., 2011. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small 7, 1774–1778. Maestro, L.M., Haro-Gonza ́lez, P., Iglesias de la Cruz, M.C., Sanz Rodr ́ıguez, F., Juarranz, A., Sole, J.G., Jaque, D., 2013. Fluorescent nanothermometers provide controlled plasmonic- mediated intracellular hyperthermia. Nanomedicine 8, 379–388.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-453

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP