
PDF Publication Title:
Text from PDF Page: 457
422 Handbook on the Physics and Chemistry of Rare Earths Saunders, L.R., Verdin, E., 2009. Cell biology stress response and aging. Science 323, 1021–1022. Savchuk, O.A., Haro-Gonzalez, P., Carvajal, J.J., Jaque, D., Massons, J., Aguilo, M., Diaz, F., 2014. Er:Yb:NaY2F5O up-converting nanoparticles for sub-tissue fluorescence lifetime ther- mal sensing. Nanoscale 6, 9727–9733. Savchuk, O.A., Carvajal, J.J., Pujol, M.C., Barrera, E.W., Massons, J., Aguilo, M., Diaz, F., 2015. Ho, Yb:KLu(WO4)2 nanoparticles: a versatile material for multiple thermal sensing purposes by luminescent thermometry. J. Phys. Chem. C 119, 18546–18558. Savitski, M.M., Reinhard, F.B.M., Franken, H., Werner, T., Savitski, M.F., Eberhard, D., Molina, D.M., Jafari, R., Dovega, R.B., Klaeger, S., Kuster, B., Nordlund, P., Bantscheff, M., Drewes, G., 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 343, 1255784. Schuller, J.A., Barnard, E.S., Cai, W.S., Jun, Y.C., White, J.S., Brongersma, M.L., 2010. Plasmo- nics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204. Sedlmeier, A., Achatz, D.E., Fischer, L.H., Gorris, H.H., Wolfbeis, O.S., 2012. Photon upconvert- ing nanoparticles for luminescent sensing of temperature. Nanoscale 4, 7090–7096. Sedmak, I., Urbancˇicˇ, I., Sˇtrancar, J., Mortier, M., Golobicˇ, I., 2015. Transient submicron temper- ature imaging based on the fluorescence emission in an Er/Yb co-doped glass–ceramic. Sens. Actuators A: Phys. 230, 102–110. Seitz, F., 1939. An interpretation of crystal luminescence. Trans. Faraday Soc. 35, 0074–0084. Shahi, P.K., Singh, A.K., Rai, S.B., Ullrich, B., 2015. Lanthanide complexes for temperature sensing, UV light detection, and laser applications. Sens. Actuators A: Phys. 222, 255–261. Shen, J., Chen, G.Y., Vu, A.M., Fan, W., Bilsel, O.S., Chang, C.C., Han, G., 2013. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1, 644–650. Shi, L., Dames, C., Lukes, J.R., Reddy, P., Duda, J., Cahill, D.G., Lee, J., Marconnet, A., Goodson, K.E., Bahk, J.-H., Shakouri, A., Prasher, R.S., Felts, J., King, W.P., Han, B., Bischof, J.C., 2015. Evaluating broader impacts of nanoscale thermal transport research. Nanosci. Microsc. Thermophys. Eng. 19, 127–165. Shinn, M.D., Sibley, W.A., Drexhage, M.G., Brown, R.N., 1983. Optical-transitions of Er3+ ions in fluorozirconate glass. Phys. Rev. B 27, 6635–6648. Singh, S.K., Kumar, K., Rai, S.B., 2009a. Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sens. Actuators A: Phys. 149, 16–20. Singh, S.K., Kumar, K., Rai, S.B., 2009b. Multifunctional Er3+-Yb3+ codoped Gd2O3 nanocrystal- line phosphor synthesized through optimized combustion route. Appl. Phys. B: Lasers Opt. 94, 165–173. Singh, S.K., Kumar, K., Rai, S., 2010. Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater. Appl. Phys. B: Lasers Opt. 100, 443–446. Singh, B.P., Parchur, A.K., Ningthoujam, R.S., Ramakrishna, P.V., Singh, S., Singh, P., Rai, S.B., Maalej, R., 2014. Enhanced up-conversion and temperature-sensing behaviour of Er3+ and Yb3+ co-doped Y2Ti2O7 by incorporation of Li+ ions. Phys. Chem. Chem. Phys. 16, 22665–22676. Smith, A.M., Mancini, M.C., Nie, S.M., 2009. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711. Somero, G.N., 1995. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68. Song, Y., Liu, G.X., Dong, X.T., Wang, J.X., Yu, W.S., Li, J.M., 2015. Au nanorods@NaGdF4/ Yb3+, Er3+ multifunctional hybrid nanocomposites with upconversion luminescence, magne- tism, and photothermal property. J. Phys. Chem. C 119, 18527–18536. Soukka, T., H€arm€a, H., 2011. Lanthanide nanoparticules as photoluminescent reporters. In: H€anninen, P., H€arm€a, H. (Eds.), Lanthanide Luminescence—Photophysical, Analytical and Biological Aspects, vol. 7. Springer-Verlag, Berlin, pp. 89–113 (Chapter 3).PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |