PDF Publication Title:
Text from PDF Page: 012
Nanomaterials 2022, 12, 3069 12 of 12 14. Yi, S.H.; Xu, T.H.; Li, L.; Gao, M.M.; Du, K.; Zhao, H.L.; Bai, Y. Fast ion conductor modified double-polymer (PVDF and PEO) matrix electrolyte for solid lithium-ion batteries. Solid State Ion. 2020, 355, 115419–115429. [CrossRef] 15. Yu, H.; Han, J.S.; Hwang, G.C.; Cho, J.S.; Kang, D.W.; Kim, J.K. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochim. Acta 2021, 365, 137349–137357. [CrossRef] 16. Qu, W.J.; Yan, M.X.; Luo, R.; Qian, J.; Wen, Z.Y.; Chen, N.; Li, L.; Wu, F.; Chen, R.J. A novel nanocomposite electrolyte with ultrastable interface boosts long life solid-state lithium metal batteries. J. Power Sources 2021, 484, 229195–229203. [CrossRef] 17. Shahi, M.; Hekmat, F.; Shahrokhian, S. Hybrid supercapacitors constructed from double-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures. J. Colloid. Interface Sci. 2021, 585, 750–763. [CrossRef] 18. Zhang, J.; Su, Y.; Zhang, Y. Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale 2020, 12. [CrossRef] 19. Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J.X.; Liu, P.B. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries. J. Energy Chem. 2021, 60, 259–271. [CrossRef] 20. Duluard, S.; Paillassa, A.; Lenormand, P.; Taberna, P.L.; Simon, P.; Rozier, P.; Ansart, F. Dense on Porous Solid LATP Electrolyte System: Preparation and Conductivity Measurement. J. Am. Ceram. Soc. 2017, 100, 1–7. [CrossRef] 21. Liang, J.N.; Hwang, S.; Li, S.; Luo, J.; Sun, Y.P.; Zhao, Y.; Sun, Q.; Li, W.H.; Li, M.S.; Li, R.Y.; et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 2020, 78, 105107–105118. [CrossRef] 22. Jung, W.D.; Jeon, M.; Shin, S.S.; Kim, J.S.; Jung, H.G.; Kim, B.K.; Lee, J.H.; Chung, Y.C.; Kim, H. Functionalized Sulfide Solid Electrolyte with Air-Stable and Chemical-Resistant Oxysulfide Nanolayer for All-Solid-State Batteries. ACS Omega 2020, 5, 26015–26022. [PubMed] 23. Li, D.; Chen, L.; Wang, T.S.; Fan, L.Z. 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries. ACS Appl. Mater. Inter. 2018, 10, 7069–7078. [CrossRef] 24. Zhang, Q.Q.; Liu, K.; Ding, F.; Liu, X.J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174. [CrossRef] 25. Yue, L.P.; Ma, J.; Zhang, J.J.; Zhao, J.J.W.; Dong, S.M.; Liu, Z.H.; Cui, G.L.; Chen, L.Q. All solid-state polymer electrolytes for high-performance lithium-ion batteries. Energy Storage Mater. 2016, 5, 139–164. [CrossRef] 26. Zhang, Y.; Li, L.Y.; Ding, Z.Y.; Chen, Y.F.; Yuan, Q.H.; Sun, R.T.; Li, K.K.; Liu, C.; Wu, J.W. SnO2 nanoparticles embedded in 3D hierarchical honeycomb-like carbonaceous network for high-performance lithium ion battery. J. Alloys Compd. 2021, 858, 157716–157724. 27. Wang, H.; Hu, P.; Liu, X.T.; Shen, Y.; Li, X.Y.; Li, Z.; Huang, Y.H. Sowing Silver Seeds within Patterned Ditches for Dendrite-Free Lithium Metal Batteries. Adv. Sci. 2021, 20, 2100684–2100692. [CrossRef] 28. Liang, X.H.; Han, D.; Wang, Y.T.; Lan, L.X.; Mao, J. Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries. RSC Adv. 2018, 8, 40498–40504. 29. Li, C.; Huang, Y.; Feng, X.; Zhang, Z.; Gao, H.; Huang, J. Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries. J. Colloid Interface Sci. 2021, 594, 1–8. [CrossRef] 30. Miao, X.Y.; Qin, X.; Huang, S.Y.; Wei, T.Y.; Lei, C.R. Hollow spherical LiNi0.5Mn1.5O4 synthesized by a glucose-assisted hydrothermal method. Mater. Lett. 2021, 289, 129417. [CrossRef] 31. Wei, Q.L.; DeBlock, R.H.; Butts, D.M.; Choi, C.; Dunn, B. Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage. Energy Environ. Mater. 2020, 3, 221–234. [CrossRef] 32. Mitsuharu, T.; Riki, K.; Koji, Y. High-capacity Li-excess lithium nickel manganese oxide as a Co-free positive electrode material. Mater. Res. Bull. 2021, 137, 111178–111188. 33. Chen, L.J.; Song, K.M.; Shi, J.; Zhang, J.Y.; Mi, L.W.; Chen, W.H.; Liu, C.T.; Shen, C.Y. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Sci. China Mater. 2020, 64, 105–114. [CrossRef]PDF Image | Simple Three-Matrix Solid Electrolyte Membrane in Air
PDF Search Title:
Simple Three-Matrix Solid Electrolyte Membrane in AirOriginal File Name Searched:
nanomaterials-12-03069.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing. CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |