PDF Publication Title:
Text from PDF Page: 009
Crystals 2022, 12, 1290 9 of 9 19. Jung, Y.S.; Cavanagh, A.S.; Gedvilas, L.; Widjonarko, N.E.; Scott, I.D.; Lee, S.H.; Kim, G.H.; George, S.M.; Dillon, A.C. Improved Functionality of Lithium-Ion Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Adv. Energy Mater. 2012, 2, 1022–1027. [CrossRef] 20. Park, J.-H.; Cho, J.-H.; Park, W.; Ryoo, D.; Yoon, S.-J.; Kim, J.H.; Jeong, Y.U.; Lee, S.-Y. Close-Packed SiO2/Poly (Methyl Methacrylate) Binary Nanoparticles-Coated Polyethylene Separators for Lithium-Ion Batteries. J. Power Sources 2010, 195, 8306–8310. [CrossRef] 21. Yong, T.; Zhang, L.; Wang, J.; Mai, Y.; Yan, X.; Zhao, X. Novel Choline-Based Ionic Liquids as Safe Electrolytes for High-Voltage Lithium-Ion Batteries. J. Power Sources 2016, 328, 397–404. [CrossRef] 22. Fu, A.; Lin, J.; Zhang, Z.; Xu, C.; Zou, Y.; Liu, C.; Yan, P.; Wu, D.-Y.; Yang, Y.; Zheng, J. Synergistical Stabilization of Li Metal Anodes and LiCoO2 Cathodes in High-Voltage Li//LiCoO2 Batteries by Potassium Selenocyanate (Ksecn) Additive. ACS Energy Lett. 2022, 7, 1364–1373. [CrossRef] 23. Wang, X.; Zheng, X.; Liao, Y.; Huang, Q.; Xing, L.; Xu, M.; Li, W. Maintaining Structural Integrity of 4.5 V Lithium Cobalt Oxide Cathode with Fumaronitrile as a Novel Electrolyte Additive. J. Power Sources 2017, 338, 108–116. [CrossRef] 24. Kong, X.; Zhou, R.; Wang, J.; Zhao, J. An Effective Electrolyte Strategy to Improve the High-Voltage Performance of LiCoO2 Cathode Materials. ACS Appl. Energy Mater. 2019, 2, 4683–4691. [CrossRef] 25. Lin, S.; Zhao, J. Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO2 Cathode and Lithium Metal Anode. ACS Appl. Mater. Interfaces 2020, 12, 8316–8323. [CrossRef] 26. Lee, S.; Park, K.; Koo, B.; Park, C.; Jang, M.; Lee, H.; Lee, H. Safe, Stable Cycling of Lithium Metal Batteries with Low-Viscosity, Fire-Retardant Locally Concentrated Ionic Liquid Electrolytes. Adv. Funct. Mater. 2020, 30, 2003132. [CrossRef] 27. Fu, C.; Ma, Y.; Lou, S.; Cui, C.; Xiang, L.; Zhao, W.; Zuo, P.; Wang, J.; Gao, Y.; Yin, G. A Dual-Salt Coupled Fluoroethylene Carbonate Succinonitrile-Based Electrolyte Enables Li-Metal Batteries. J. Mater. Chem. A 2020, 8, 2066–2073. [CrossRef] 28. Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G. Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery. Adv. Sci. 2019, 6, 1901036. [CrossRef] 29. Song, J.; Si, Y.; Guo, W.; Wang, D.; Fu, Y. Organosulfide-Based Deep Eutectic Electrolyte for Lithium Batteries. Angew. Chem. Inter. Ed. 2021, 133, 9969–9973. [CrossRef] 30. Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M.H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J.-G. A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(Oxalate)Borate Additive for Stable Lithium Metal Batteries. ACS Energy Lett. 2018, 3, 2059–2067. [CrossRef] 31. Yu, L.; Guo, S.; Lu, Y.; Li, Y.; Lan, X.; Wu, D.; Li, R.; Wu, S.; Hu, X. Highly Tough, Li-Metal Compatible Organic-Inorganic Double-Network Solvate Ionogel. Adv. Energy Mater. 2019, 9, 1900257. [CrossRef] 32. Hu, Z.; Xian, F.; Guo, Z.; Lu, C.; Du, X.; Cheng, X.; Zhang, S.; Dong, S.; Cui, G.; Chen, L. Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chem. Mater. 2020, 32, 3405–3413. [CrossRef] 33. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X.; Wang, T.; Wang, Y.; Wang, G. Deep Eutectic Solvent-Based Self-Healing Polymer Electrolyte for Safe and Long-Life Lithium-Metal Batteries. Angew. Chem. Inter. Ed. 2020, 59, 9134–9142. [CrossRef] 34. Wu, W.; Bo, Y.; Li, D.; Liang, Y.; Zhang, J.; Cao, M.; Guo, R.; Zhu, Z.; Ci, L.; Li, M.; et al. Safe and Stable Lithium Metal Batteries Enabled by an Amide-Based Electrolyte. Nano-Micro Lett. 2022, 14, 44. [CrossRef] 35. Zhao, J.; Wang, L.; He, X.; Wan, C.; Jiang, C. Determination of Lithium-Ion Transference Numbers in LiPF6–Pc Solutions Based on Electrochemical Polarization and Nmr Measurements. J. Electrochem. Soc. 2008, 155, A292. [CrossRef] 36. Valøen, L.O.; Reimers, J.N. Transport Properties of Lipf6-Based Li-Ion Battery Electrolytes. J. Electrochem. Soc. 2005, 152, A882. [CrossRef] 37. Du, Z.; Wood, D.L.; Belharouak, I. Enabling Fast Charging of High Energy Density Li-Ion Cells with High Lithium Ion Transport Electrolytes. Electrochem. Commun. 2019, 103, 109–113. [CrossRef] 38. Pu, W.; He, X.; Lu, J.; Jiang, C.; Wan, C. Molar Conductivity Calculation of Li-Ion Battery Electrolyte Based on Mode Coupling Theory. J. Chem. Phys. 2005, 123, 231105. [CrossRef] 39. Yu, X.; Wang, L.; Ma, J.; Sun, X.; Zhou, X.; Cui, G. Selectively Wetted Rigid-Flexible Coupling Polymer Electrolyte Enabling Superior Stability and Compatibility of High-Voltage Lithium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903939. [CrossRef] 40. Dong, T.; Zhang, J.; Xu, G.; Chai, J.; Du, H.; Wang, L.; Wen, H.; Zang, X.; Du, A.; Jia, Q.; et al. A Multifunctional Polymer Electrolyte Enables Ultra-Long Cycle-Life in a High-Voltage Lithium Metal Battery. Energy Environ. Sci. 2018, 11, 1197–1203. [CrossRef] 41. Ruan, D.; Chen, M.; Wen, X.; Li, S.; Zhou, X.; Che, Y.; Chen, J.; Xiang, W.; Li, S.; Wang, H.; et al. In Situ Constructing a Stable Interface Film on High-Voltage LiCoO2 Cathode Via a Novel Electrolyte Additive. Nano Energy 2021, 90, 106535. [CrossRef]PDF Image | Non-Flammable Dual-Salt Deep Eutectic Electrolyte
PDF Search Title:
Non-Flammable Dual-Salt Deep Eutectic ElectrolyteOriginal File Name Searched:
crystals-12-01290-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)