logo

Geothermal Energy 1249 USGS

PDF Publication Title:

Geothermal Energy 1249 USGS ( geothermal-energy-1249-usgs )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 014

nations along the circum-Pacific Ring of Fire, such as the United States, Japan, New Zealand, and Mexico. Comparison with Other Natural Resources Geothermal resources are similar to many mineral and energy resources. A mineral deposit is generally evaluated in terms of the quality or purity (grade) of the ore and the amount of this ore (size or tonnage) that can be mined profitably. Such grade-and-size criteria also can be applied to the evaluation of geothermal energy potential. Grade would be roughly analo- gous to temperature, and size would correspond to the volume of heat-containing material that can be tapped. For mineral and geothermal deposits alike, concentrations of the natural resource should be significantly higher than average (the background level) for the Earth’s crust and must be at depths accessible by present-day extraction technologies before com- mercial development is feasible. However, geothermal resources differ in important ways from many other natural resources. For example, the exploita- tion of metallic minerals generally involves digging, crushing, and processing huge amounts of rock to recover a relatively small amount of a particular element. In contrast, geothermal energy is tapped by means of a liquid carrier—generally the water in the pores and fractures of rocks—that either naturally reaches the surface at hot springs, or can readily be brought to the surface through drilled wells. The extraction of geothermal energy is accomplished without the large-scale movement of rock involved in mining operations, such as construction of mine shafts and tunnels, open pits, and waste heaps. Geothermal energy has another important advantage. It is usable over a very wide spectrum of temperature and volume, whereas the benefits of other natural resources can be reaped only if a deposit exceeds some minimum size and (or) grade for profitable exploitation or efficiency of operation. For example, at the low end of the spectrum, geothermal energy can help heat and cool a single residence. To do so requires only the burial of piping a few meters underground, where the temperature fluctuates little with the changing seasons. Then, by circulating water or some other fluid through this piping using a geothermal heat pump, thermal energy is extracted from the ground during the coldest times of the year and deposited in the ground during the hottest times. Together, the heat pump and the Earth’s thermal energy form a small, effec- tive, and commercially viable heating and cooling system. Heat pump systems are already in use at more than 350,000 buildings in the United States. Toward the high end of the spectrum, a single large- volume, high-temperature deposit of geothermal energy can be harnessed to generate electricity sufficient to serve a city of 1 million people or more. For example, at The Geysers in northern California, fractures in rocks beneath a large area are filled with steam of about 240°C at depths that can easily be reached using present-day drilling technology. This steam is produced through wells, piped directly to conventional turbine generators, and used to generate electricity. With a generating capacity of about 1,000 megawatts electric, The Geysers is presently the largest group of geothermally powered electrical plants in the world. At current rates of per capita consumption in the United States, 1 megawatt is sufficient to supply a com- munity with a population of 1,000. Between these relatively extreme examples are geo- thermal resources that encompass a broad spectrum of grade (temperature) and tonnage (volume). The challenge, for governmental agencies and the private sector alike, is to assess the amount and distribution of these resources, to work toward new and inventive ways to use this form of energy, and to incorporate geothermal into an appropriate energy mix for the Nation and the world. Geothermal Energy—Clean Power From the Earth’s Heat 7

PDF Image | Geothermal Energy 1249 USGS

geothermal-energy-1249-usgs-014

PDF Search Title:

Geothermal Energy 1249 USGS

Original File Name Searched:

c1249.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP