PDF Publication Title:
Text from PDF Page: 017
347 9. Vikström, H.; Davidsson, S.; Höök, M., Lithium availability and future production outlooks. 348 Applied Energy 2013, 110, 252-266. 349 10. Chitrakar, R.; Kanoh, H.; Miyai, Y.; Ooi, K., Recovery of Lithium from Seawater Using Manganese 350 Oxide Adsorbent (H1.6Mn1.6O4) Derived from Li1.6Mn1.6O4. Industrial & Engineering Chemistry 351 Research 2001, 40 (9), 2054-2058. 352 11. Nishihama, S.; Onishi, K.; Yoshizuka, K., Selective Recovery Process of Lithium from Seawater 353 Using Integrated Ion Exchange Methods. Solvent Extraction and Ion Exchange 2011, 29 (3), 421-431. 354 12. Chitrakar, R.; Makita, Y.; Ooi, K.; Sonoda, A., Lithium recovery from salt lake brine by H2TiO3. 355 Dalton Transactions 2014, 43 (23), 8933-8939. 356 13. Liu, L.; Zhang, H.; Zhang, Y.; Cao, D.; Zhao, X., Lithium extraction from seawater by manganese 357 oxide ion sieve MnO2·0.5H2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 358 468, 280-284. 359 14. Dang, V.-D.; Steinberg, M., Preliminary design and analysis of recovery of lithium from brine with 360 the use of a selective extractant. Energy 1978, 3 (3), 325-336. 361 15. Besserguenev, A. V.; Fogg, A. M.; Francis, R. J.; Price, S. J.; O'Hare, D.; Isupov, V. P.; Tolochko, B. 362 P., Synthesis and Structure of the Gibbsite Intercalation Compounds [LiAl2(OH)6]X {X = Cl, Br, NO3} and 363 [LiAl2(OH)6]Cl·H2O Using Synchrotron X-ray and Neutron Powder Diffraction. Chemistry of Materials 364 1997, 9 (1), 241-247. 365 16. Fogg, A. M.; O'Hare, D., Study of the Intercalation of Lithium Salt in Gibbsite Using Time- 366 Resolved in Situ X-ray Diffraction. Chemistry of Materials 1999, 11 (7), 1771-1775. 367 17. Thiel, J. P.; Chiang, C. K.; Poeppelmeier, K. R., Structure of lithium aluminum hydroxide dihydrate 368 (LiAl2(OH)7.2H2O). Chemistry of Materials 1993, 5 (3), 297-304. 369 18. Burba, J. L., Crystalline lithium aluminates. Google Patents: 1982. 370 19. Burba, J. L., Method of making crystalline 2-layer lithium aluminates in ion exchange resins. 371 Google Patents: 1984. 372 20. Bauman, W. C.; Burba, J. L., Composition for the recovery of lithium values from brine and 373 process of making/using said composition. Google Patents: 2001. 374 21. Harrison, S.; Sharma, C. V. K.; Conley, M. S., Porous activated alumina based sorbent for lithium 375 extraction. Google Patents: 2014. 376 22. Burba, J. L.; Stewart, R. F.; Viani, B. E.; Harrison, S.; Vogdes, C. E.; Lahlouh, J. G. S., Sorbent for 377 lithium extraction. Google Patents: 2014. 378 23. Harrison, S.; Sharma, C. V. K.; Viani, B. E.; Rex, D., Lithium extraction composition and method of 379 preparation thereof. Google Patents: 2015. 380 24. Poeppelmeier, K. R.; Hwu, S. J., Synthesis of lithium dialuminate by salt imbibition. Inorganic 381 Chemistry 1987, 26 (20), 3297-3302. 382 25. Ryu, T.; Shin, J.; Lee, D.-H.; Ryu, J.; Park, I.; Hong, H.; Kim, B.-G.; Lee, J. B.; Huh, Y. S.; Chung, K.-S., 383 Improvement of lithium adsorption capacity of porous cylinder-type lithium manganese oxide through 384 introduction of additive. Materials Chemistry and Physics 2015, 167, 225-230. 385 386 387 388 389 17PDF Image | Recovery of Lithium from Geothermal Brine Li AL
PDF Search Title:
Recovery of Lithium from Geothermal Brine Li ALOriginal File Name Searched:
1424451.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing. CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |