
PDF Publication Title:
Text from PDF Page: 038
Thermodynamics and Energy Engineering [171] Liu H, Cheng C, Zongqiuhu D, Zhang K. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Materials Chemistry and Physics. 2007;101:276-279 [172] Ein-Eli Y, Urian RC, Wen W, Mukerjee S. Low temperature performance of copper/nickel modified LiMn2O4 spinels. Electrochimica Acta. 2005;50:1931-1937 [173] Wu HM, Tu JP, Chen XT, Li Y, Zhao XB, Cao GS. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. Journal of Solid State Electrochemistry. 2007;11:173-176 [174] Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Selvin PC. Synthesis of compounds, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) by polymer precursor method and its electrochemical performance for lithium-ion batteries. Electrochimica Acta. 2010;55:4441-4450 [175] Malyovanyi SM, Andriiko AA, Monko AP. Synthesis and electrochemical behavior of Fe-doped overstoichiometric LiMn2O4-based spinels. Journal of Solid State Electrochemistry. 2003;8:7-10 [176] Xu W, Yuan A, Tian L, Wang Y. Improved high-rate cyclability of sol–gel derived Cr-doped spinel LiCryMn2- yO4 in an aqueous electrolyte. Journal of Applied Electrochemistry. 2011;41:453-460 [177] Liu D-Q , Liu X-Q , He Z-Z. The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery. Materials Chemistry and Physics. 2007;105:362-366 [178] Amaral FA, Bocchi N, Brocenschi RF, Biaggio SR, Rocha- Filho RC. Structural and electrochemical properties of the doped spinels Li1.05M0.02Mn1.98O3.98N0.02 (M = Ga3+, Al3+, or Co3+; N = S2− or F−) for use as cathode material in lithium batteries. Journal of Power Sources. 2010;195:3293-3299 [179] Singh P, Sil A, Nath M, Ray S. Synthesis and characterization of Li[Mn2-xMgx]O4 (x = 0.0-0.3) prepared by sol-gel synthesis. Ceramics-Silikáty. 2010;54:38-46 [180] Liu Q , Wang S, Tan H, Yang Z, Zeng J. Preparation and doping mode of doped LiMn O for Li-ion batteries. 2 4 Energies. 2013;6:1718-1730 [181] Chitrakar R, Yoji M, Kenta O, Akinari S. Magnesium-doped manganese oxide with lithium ion-sieve property: Lithium adsorption from salt lake brine. Bulletin of the Chemical Society of Japan. 2013;86:850-855 [182] Feng Q , Kanoh H, Miyai Y, Ooi K. Li+ extraction/insertion reactions with LiZn0.5Mn1.5O4 spinel in the aqueous phase. Chemistry of Materials. 1995;7:379-384 [183] Feng Q , Miyai Y, Kanoh H, Ooi K. Lithium(1+) and magnesium(2+) extraction and lithium(1+) insertion reactions with lithium magnesium manganese oxide (LiMg0.5Mn1.5O4) spinel in the aqueous phase. Chemistry of Materials. 1993;5:311-316 + [184] Liu Y-F, Feng Q , Ooi K. Li extraction/insertion reactions with LiAlMnO4 and LiFeMnO4 spinels in the aqueous phase. Journal of Colloid and Interface Science. 1994;163:130-136 [185] Ma L-W, Chen B-Z, Shi X-C, + Zhang W, Zhang K. Stability and Li extraction/adsorption properties of 36PDF Image | Lithium Recovery from Seawater Salt Lake Brine
PDF Search Title:
Lithium Recovery from Seawater Salt Lake BrineOriginal File Name Searched:
IntechOpenSamadiyBookchapter.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |