PDF Publication Title:
Text from PDF Page: 017
Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water... DOI: http://dx.doi.org/10.5772/intechopen.90371 than 95%. Synergistic extraction of lithium from seawater using a TTA-TOPO mixture has been reported by Harvianto et al. [123]. About 93% of the lithium can be recovered by TTA-TOPO. With acidic solutions, the lithium ion can be easily removed, but the removal efficiency decreases with increasing pH of acidic solutions. The type of acid does not affect the stripping efficiency. Similarly, by liquid-liquid extraction, 65% of lithium can be extracted from seawater, in the liquid-liquid extraction process, a magnesium ion is precipitated in advance. The recovery efficiency of lithium ions is negated by other metal ions in seawater [123]. 5.4 Membrane process recovery of lithium from seawater In recent years a number of authors have studied lithium recovery using dif- ferent types of membranes. The membrane process of lithium reduction is a fairly advanced process that is gaining the attention of various researchers around the world. Polysulfone (PSf)-based mixed matrix nanofiber dispersed with particulate lithium ion sieves as a flow-through membrane Li+ absorber has developed by Park et al. A mixed matrix of electro-spinning nanofibers was prepared by thermal annealing, where lithium-ion sieves were activated by acid pickling as Li0.67H0.96Mn1.58O4 or MO. PSF based mixed matrix nanofiber effectively improved Li+ selectivity. At minimal trans-membrane pressure, the mixed matrix nanofiber membranes were very permeable to water. By supporting the dynamic adsorp- tion capacity of Li+ mixed matrix nanofibers, the shorter adsorption–desorption cycle time (24 h) was successfully controlled by continuous streaming operations. In a small volume of acid solution, Li+ enrichment was successfully achieved by repeated desorption of Li+ [115]. Recovery of lithium from seawater using an inorganic adsorbent containing a polymer membrane reservoir system, reported Chung et al. To extract lithium from seawater, Chung et al. used three different membranes: a PSf nonwoven membrane, a PSF nonwoven composite membrane and a Kimtex® composite membrane. The proposed system has the advantage of direct application in the seawater eliminates the use of a pressurized flow system [124]. The proposed system can have a direct application in seawater using a pressure flow system. In addition, lithium extraction from seawater using an inorganic adsorbent containing a polymer membrane has been reported by Umeno et al. Lithium recovery from seawater desalination retentate using composite poly(acrylonitrile) nanofibers with H1.6Mn1.6O4 (HMO) lithium ion sieves was reported by Park et al. [110]. To obtain nanofibers, HMO/PAN dope solutions in N,N-dimethylformamide (DMF) with different HMO loads were used, and nanofibers were obtained by electros- pinning. For efficient lithium extraction from seawater desalination retentate the material may be a potential membrane (Park et al.) [110]. The use of poly(vinyl chloride) (PVC) membrane adsorbent spinel-type manganese oxide by solvent exchange reported by Umeno et al. Poly(vinyl chloride) was dissolved in DMF solution, then lithium manganese oxide (spinel type) was mixed with DMF to obtain a suspension. The cured PVC film was prepared by applying a suspension to a thin film and immersed in water. To extract lithium obtained as a membrane type adsorbent the membrane was treated with HCl solution. Lithium extraction has been reported to be highly dependent on the method of preparation [109]. Hoshino reported on the recovery of lithium by dialysis and electrodialysis of seawater [111–113]. Selective extraction of lithium from seawater under laboratory conditions was investigated by electrodialysis using an ionic liquid (PP13-TFSI) impregnated with a membrane. The lithium recovery process was developed using 15PDF Image | Lithium Recovery from Seawater Salt Lake Brine
PDF Search Title:
Lithium Recovery from Seawater Salt Lake BrineOriginal File Name Searched:
IntechOpenSamadiyBookchapter.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)