Lithium Recovery from Seawater Salt Lake Brine

PDF Publication Title:

Lithium Recovery from Seawater Salt Lake Brine ( lithium-recovery-from-seawater-salt-lake-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 015

Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water... DOI: http://dx.doi.org/10.5772/intechopen.90371 5.2 Ion exchange and sorption method for extracting lithium from seawater Although various mega-industries are interested in extracting lithium from seawater in the present decade, extracting lithium from seawater has become increasingly attractive to researchers over several years through ion exchange and sorption. Several alternative methods of lithium extraction from seawater using ion-exchange after solar evaporation and fractional crystallization of NaCl, KCl and CaSO4 are also proposed. According to this method, organic and inorganic sorbents are similar to the compounds used to extract lithium. Reports explaining this method are discussed below. Obtained by treating a Dowex-1 type microporous anion exchanger with a lithium-selective aluminum-containing resin with a satu- rated solution of ammonia, AlCl3, and finally a solution of lithium halide before heating to produce a composite matrix of the microcrystalline resin LiX·2Al(OH)3 is an example of such products that have been patented in the United States [66, 116, 117]. High selectivity for lithium extraction was synthesized with sorbents based on antimony, tin, dioxides based on titanium and zirconium [118], mixed oxides of titanium and iron, titanium and chromium, titanium arsenate and magnesium and thorium [66]. To extract lithium from seawater, only manganese oxide-based cation exchange yields effective results in a wide range of lithium-selective ion exchange materials. Russian scientists use manganese oxide and mixed oxides of manganese and aluminum, known as ISM-1 and ISMA-1, respectively, to reduce lithium [66, 119]. For Li+ in mixtures of alkali metal and alkali metal ions, the H2TiO3 ion exchanger resulted in high selectivity. Achieving the exchange capacity of Li+ was 25–34 mg g−1. High selectivity for lithium cations by synthetic inorganic materials of titanium (IV) antimonate cation exchanger (TiSbA) ion exchange has been reported by Abe et al. Recovery of lithium cations from hydrothermal water as well as seawater can be successfully applied. Using the periodic method, the effect of K+, Mg2+ and Ca2+ cations on the adsorption of lithium cations on TiSbA has been reported by Abe et al. They showed that lithium adsorption decreases significantly with increasing concentrations of K+, Mg2+ and Ca2+ cations. Lithium from the sea and hydrothermal water is enriched through TiSbA columns. To separate lithium cations from seawater and hydrothermal water TiSbA exchanger potentially be reused. With HNO3 solution as the eluent, the adsorbed lithium can be eluted [120]. Selective extraction of lithium from seawater using two sequential ion exchange processes has been reported by Nishihama et al. [100]. By bench chromatographic operation with adsorbent k-MnO2, lithium was concentrated from seawater, which has a 33% lithium recovery efficiency. A combination of ion exchange using resin and solvent impregnated resin is carried out lithium purification from the concen- trated liquor of the reference unit. The cleaning process consists of the removal of divalent metal ions with a strong acid cation exchange resin accompanied by the removal of Na+ and K+ with b-diketone/TOPO impregnated resin; finally, the reduction of Li+ as Li2CO3 precipitates using a saturated solution (NH4)2−CO3. According to the method, the concede was 56%, and the cleanness was 99.9% [100]. Takeuchi reported on a new method of extracting lithium from seawater, also supported [101]. At a temperature of 50°C, almost 70% for lithium ion recovery is achieved in a periodic mode with a high selectivity of the Al(OH)3 layer [101]. Several authors have reported that the extraction of lithium from seawater by sorption/desorption is a fairly common process, which is discussed below [108]. Many studies based on manganese oxide sorbate are used for the sorption/desorp- tion of lithium from seawater. Japanese scientists have developed a sorbet based on hydrated c-oxides of manganese and mixed oxide of manganese and magnesium [102, 103]. By Ooi et al. lithium extraction from seawater using manganese oxide ion sieve (HMnO) was investigated. Maximum (7.8 mg g−1) absorption of lithium 13

PDF Image | Lithium Recovery from Seawater Salt Lake Brine

PDF Search Title:

Lithium Recovery from Seawater Salt Lake Brine

Original File Name Searched:

IntechOpenSamadiyBookchapter.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)