Role of Graphene in Space Technology

PDF Publication Title:

Role of Graphene in Space Technology ( role-graphene-space-technology )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Nanomaterials 2023, 13, 680 19 of 20 34. AlShehhi, A.; AlMarar, A.; AlShehhi, Y.; AlAmeri, M. Thermal design evaluation of Loop Heat Pipe for small satel- lite applications using graphene Nano-Particles. In Proceedings of the International Astronautical Congress (IAC), Washington, DC, USA, 21–25 October 2019. 35. Kuruba, P.; Rathnakar, V.B.; Dushyantha, N.D. The future of thermal stability in small satellites using aerogel and graphene. AIP Conf. Proc. 2020, 2297, 020013. [CrossRef] 36. Aravindh, S.; Karthikeyan, B. Graphene oxide-Polymethyl methacrylate coatings for Corrosion protection of aerospace aluminium alloy surfaces. Eng. Res. Express 2020, 2, 035034. [CrossRef] 37. Levine, K.; Bespalova, E.; Vankaev, A.; Klyukina, E.; Lopatin, A.; Metalnikov, N.; Saprykin, M.E.; Loginov, A.; Orazov, I.; Khanin, S.; et al. Studying wearing resistance of graphene-based materials for the project of the first in the world probe microscope –Earth satellite by solar wind plasma emulation. J. Phys. Conf. Ser. 2022, 2256, 012001. [CrossRef] 38. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [CrossRef] 39. Kavitha, M.K.; Jaiswal, M. Graphene: A review of optical properties and photonic applications. Asian J. Phys. 2016, 25, 809–831. 40. Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [CrossRef] [PubMed] 41. Sengupta, J.; Hussain, C.M. Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials 2022, 12, 3146. [CrossRef] 42. Available online: http://www.fapesp.br/week2019/london (accessed on 20 November 2022). 43. Du, X.; Prober, D.E.; Vora, H.; Mckitterick, C.B. Graphene-based Bolometers. arXiv 2013, arXiv:1308.4065. 44. Sultana, M.; Li, M.J.; Yu, A.W. Method of Manufacturing Large Area Graphene and Graphene-Based Photonics Devices. U.S. Patent 10450650, 22 October 2019. 45. Available online: https://www.eejournal.com/industry_news/paragraf-and-npl-demonstrate-that-paragrafs-graphene-hall- effect-sensors-are-ready-for-high-radiation-applications-in-space-and-beyond (accessed on 18 September 2020). 46. Matloff, G.L. Graphene: The ultimate solar sail material. J. Br. Interplanet. Soc. (JBIS) 2012, 65, 378–381. [CrossRef] 47. Matloff, G.L. Graphene solar photon sails and interstellar arks. J. Br. Interplanet. Soc. (JBIS) 2014, 67, 237–246. 48. Gaudenzi, R.; Stefani, D.; Cartamil-Bueno, S.J. Light-induced propulsion of graphene-on-grid sails in microgravity. Acta Astronaut. 2020, 174, 204–210. [CrossRef] 49. China Completes Design of Graphene Composite Film for Light Propulsion/Release May 3, 2018. Available online: https: //www.spacetechasia.com/ (accessed on 20 November 2022). 50. Available online: https://www.nasa.gov/mission_pages/tdm/solarsail/solarsail_overview.html# (accessed on 15 November 2022). 51. Available online: www.esa.int/ESA_Multimedia/Images/2020/05/Graphene_sail_in_microgravity (accessed on 19 May 2020). 52. Zhang, T.; Chang, H.; Wu, Y.; Xiao, P.; Yi, N.; Lu, Y.; Ma, Y.; Huang, Y.; Zhao, K.; Yan, X.-Q.; et al. Macroscopic and direct light propulsion of bulk graphene material. Nat. Photon 2015, 9, 471–476. [CrossRef] 53. Kumar, J.; Basu, B.; Talukdar, F.A.; Nandi, A. Stable-multiband frequency reconfigurable antenna with improved radiation efficiency and increased number of multiband operations. IET Microw. Antennas Propag. 2019, 13, 642–648. [CrossRef] 54. Cherevko, A.G.; Morgachev, Y.V. Unit Cells of Flexible Printed Graphene Reflectarray Antenna for Satellite and Microwave Communications. In Proceedings of the 2021 XV International Scientific-Technical Conference on Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, Russia, 19–21 November 2021; pp. 28–33. [CrossRef] 55. Cherevko, A.G.; Krygin, A.S.; Ivanov, A.I.; Soots, R.A.; Antonova, I.V. Benefits of Printed Graphene with Variable Resistance for Flexible and Ecological 5G Band Antennas. Materials 2022, 15, 7267. [CrossRef] 56. Rabah, M.A.; Mohammed, B. Dual Graphene Patch Antenna for Ka Band Satellite Applications. Int. J. Aviat. Aeronaut. Aerosp. 2019, 6, 6. [CrossRef] 57. Rabah, M.A.; Mohammed, B. Chemical potential variation effect of new design of graphene antenna for satellite applications. Aircr. Eng. Aerosp. Technol. 2019, 94, 392–397. [CrossRef] 58. Ram, P.; Rajakumaran, R.J.L.; Santharam, R.C.; Nancheri, J.; Ogirala, M.G. Feasibility analysis of additive manufacturing method for Graphene nano-conductive ink based super solar body mounting printed patch antenna structures in cubesat and aerospace applications. Beilstein Arch. 2019, 2019, 93. [CrossRef] 59. Deng, L.; Zhang, Y.; Zhu, J.; Zhang, C. Wide-Band Circularly Polarized Reflectarray Using Graphene-Based Pancharatnam-Berry Phase Unit-Cells for Terahertz Communication. Materials 2018, 11, 956. [CrossRef] 60. Cao, G.; Lin, H.; Fraser, S.; Zheng, X.; Del Rosal, B.; Gan, Z.; Wei, S.; Gan, X.; Jia, B. Resilieny graphene ultrathin flat lens in aerospace, chemical and biological harsh environments. ACS Appl. Mater. Interfaces 2019, 11, 20298–20303. [CrossRef] [PubMed] 61. Loeblein, M.; Bolker, A.; Tsang, S.H.; Atar, N.; Uzan-Saguy, C.; Verker, R.; Gouzman, I.; Grossman, E.; Teo, E.H.T. 3D Graphene- Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications. Small 2015, 11, 6425–6434. [CrossRef] [PubMed] 62. Stoller, M.D.; Park, S.; Yanwu, Z.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [CrossRef] 63. Chaitoglou, S.; Amade, R.; Bertran, E. Evaluation of Graphene/WO3 and Graphene/CeOx Structures as Electrodes for Superca- pacitor Applications. Nanoscale Res. Lett. 2017, 12, 635. [CrossRef] [PubMed] 64. Gonzalez-Llorente, J.; Lidtke, A.A.; Hatanaka, K.; Limam, L.; Fajardo, I.; Okuyama, K.-I. In-orbit feasibility demonstration of supercapacitors for space applications. Acta Astronaut. 2020, 174, 294–305. [CrossRef]

PDF Image | Role of Graphene in Space Technology

role-graphene-space-technology-019

PDF Search Title:

Role of Graphene in Space Technology

Original File Name Searched:

nanomaterials-13-00680-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)