
PDF Publication Title:
Text from PDF Page: 018
Nanomaterials 2023, 13, 680 18 of 20 6. Gavilan, L.; Ricketts, C.L.; Bejaoui, S.; Ricca, A.; Boersma, C.; Salama, F.; Mattioda, A.L. Raman Spectroscopic Study of Pyrene in Cosmic Dust Analogues: Evolution from the Gas to the Solid Phase. ACS Earth Space Chem. 2022, 6, 2215–2225. [CrossRef] 7. Golubev, Y.A.; Rozhkova, N.N.; Kabachkov, E.N.; Shul’Ga, Y.M.; Natkaniec-Hołderna, K.; Natkaniec, I.; Antonets, I.V.; Makeev, B.A.; Popova, N.A.; Popova, V.A.; et al. sp2 Amorphous carbons in view of multianalytical consideration: Normal, expected and new. J. Non-Cryst. Solids 2019, 524, 119608. [CrossRef] 8. Sheka, E.F.; Golubev, Y.A.; Popova, N.A. Amorphous state of sp2 solid carbon. Fuller. Nanotub. Carbon Nanostructures 2020, 29, 107–113. [CrossRef] 9. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Discover of graphene: Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [CrossRef] 10. Bhuyan, M.S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S.S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65–83. [CrossRef] 11. Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2010, 5, 217–224. [CrossRef] 12. Mohan, V.B.; Lau, K.T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B 2018, 142, 200–220. [CrossRef] 13. Dideikin, A.T.; Vul’, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 149. [CrossRef] 14. Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [CrossRef] 15. Scalia, T.; Bonventre, L. Nanotechnology in Space Economy, in Nanotechnology in Space; Terranova, M.L., Tamburri, E., Eds.; Jenny Stanford Publishing Ltd.: Singapore, 2022; Chapter 6; pp. 191–245. 16. Rambabu, P.; Prasad, N.E.; Kutumbarao, V.V.; Wanhill, R.J.H. Aluminium Alloys for Aerospace Applications. In Aerospace Materials and Material Technologies; Prasad, N.E., Wanhill, R.J.H., Eds.; Springer: Singapore, 2017; pp. 29–52. 17. Ali, A.M.; Omar, M.Z.; Hashim, H.; Salleh, M.S.; Mohamed, I.F. Recent development in graphene-reinforced aluminium matrix composite: A review. Rev. Adv. Mater. Sci. 2021, 60, 801–817. [CrossRef] 18. Ward, D.; Gupta, A.; Saraf, S.; Zhang, C.; Sakthivel, T.S.; Barkam, S.; Agarwal, A.; Seal, S. Functional NiAl-graphene oxide composite as a model coating for aerospace component repair. Carbon 2016, 105, 529–543. [CrossRef] 19. Singh, S.; Rathi, K.; Pal, K. Synthesis, characterization of graphene oxide wrapped silicon carbide for excellent mechanical and damping performance for aerospace application. J. Alloys Compd. 2018, 740, 436–445. [CrossRef] 20. Das, D.K.; Sarkar, J. Graphene magnesium nanocomposite: An advanced material for aerospace application. Mod. Phys. Lett. B 2018, 32, 1850075. [CrossRef] 21. Anjam, Q.; Hussain, F.; Imran, M.; Amina, N.; Kashif, M. A molecular dynamics study on thermal and mechanical behavior of graphene-copper nanocomposites for automobile & aerospace industry. Dig. J. Nanomater. Biostructures 2021, 16, 1185–1196. 22. Jayaseelan, J.; Pazhani, A.; Michael, A.X.; Paulchamy, J.; Batako, A.; Hosamane Guruswamy, P.K. Characterization Studies on Graphene-Aluminium Nano Composites for Aerospace Launch Vehicle External Fuel Tank Structural Application. Materials 2022, 15, 5907. [CrossRef] 23. Das, P.; Banerjee, S.; Das, N.C. Polymer-Graphene Composite in Aerospace Engineering. In Woodhead Publishing Series in Composites Science and Engineering, Polymer Nanocomposites Containing Graphene; Rahaman, M., Nayak, L., Hussein, I.A., Das, N.C., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 683–711. [CrossRef] 24. Kausar, A.; Rafique, I.; Muhammad, B. Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. Polym.-Plast. Technol. Eng. 2017, 56, 1438–1456. [CrossRef] 25. Clausi, M.; Santonicola, M.G.; Laurenzi, S. Steady-shear rheological properties of graphene- reinforced epoxy resin for manufac- turing of aerospace composite films. AIP Conf. Proc. 2016, 1736, 020024. [CrossRef] 26. Chaitoglou, S.; Spachis, L.; Zisis, G.; Raptis, I.; Papanikolaou, N.; Vavouliotis, A.; Penedo, R.; Fernandes, N.; Dimoulas, A. Layer-by-layer assembled graphene coatings on polyurethane films as He permeation barrier. Prog. Org. Coat. 2021, 150, 105984. [CrossRef] 27. Iqbal, S.S.; Sabir, A.; Islam, A.; Bukhari, S.Z.U.A.; Yasir, M.; Bashir, M.A.; Bahadur, A. Effect of Graphene for Ablation Study of Advanced Composite Materials for Aerospace Applications. Key Eng. Mater. 2018, 778, 118–125. [CrossRef] 28. Manta, A.; Gresil, M. Graphene in aerospace composites. Proc. AIP Conf. 2018, 1932, 020001. [CrossRef] 29. Tomasi, J.; Pisani, W.A.; Chinkanjanarot, S.; Krieg, A.S.; Jaszczak, D.; Pineda, E.J.; Bednarcyk, B.A.; Miller, S.; King, J.A.; Miskioglu, I.; et al. Modelling-driven damage tolerant design of graphene nanoplatelet/carbon fiber/epoxy hybrid composite panels for full-scale aerospace structures. In Proceedings of the 33rd Technical Conference of the American Society for Composites, Seattle, WA, USA, 24–27 September 2018; pp. 656–675. [CrossRef] 30. Zainab, N.; Zaffar, K. Graphene Effect on Mechanical Properties of Sandwich Panel for Aerospace Structures. KEM 2021, 875, 121–126. [CrossRef] 31. Available online: https://orbex.space/news (accessed on 6 December 2022). 32. Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [CrossRef] [PubMed] 33. Available online: https://www.esa.int/Education/Solar_sails#.Y-JwbEOlocU.link (accessed on 6 January 2023).PDF Image | Role of Graphene in Space Technology
PDF Search Title:
Role of Graphene in Space TechnologyOriginal File Name Searched:
nanomaterials-13-00680-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |