
PDF Publication Title:
Text from PDF Page: 451
416 Handbook on the Physics and Chemistry of Rare Earths Groom, D.E., Holland, S.E., Levi, M.E., Palaio, N.P., Perlmutter, S., Stover, R.J., Wei, M., 1999. Quantum efficiency of a back-illuminated CCD imager: an optical approach. Proc. SPIE 3649, 80–90. Gu, Z.J., Yan, L., Tian, G., Li, S.J., Chai, Z.F., Zhao, Y.L., 2013. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779. Guan, X.L., Liu, X.Y., Su, Z.X., 2007. Preparation and photophysical behaviors of fluorescent chitosan bearing fluorescein: potential biomaterial as temperature/pH probes. J. Appl. Polym. Sci. 104, 3960–3966. Han, S., Deng, R., Xie, X., Liu, X., 2014. Enhancing luminescence in lanthanide-doped upconver- sion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715. Hao, S., Chen, G., Yang, C., 2013. Sensing using rare-earth-doped upconversion nanoparticles. Theranostics 3, 331–345. Haro-Gonzalez, P., Ramsay, W.T., Martinez Maestro, L., del Rosal, B., Santacruz-Gomez, K., Iglesias de la Cruz, M.C., Sanz-Rodr ́ıguez, F., Chooi, J.Y., Rodriguez Sevilla, P., Bettinelli, M., Choudhury, D., Kar, A.K., Sole, J.G., Jaque, D., Paterson, L., 2013. Quantum dot-based thermal spectroscopy and imaging of optically trapped microspheres and single cells. Small 9, 2162–2170. Hartmann, M., 2006. Minimal length scales for the existence of local temperature. Contemp. Phys. 47, 89–102. Hartmann, M., Mahler, G., Hess, O., 2004. Existence of temperature on the nanoscale. Phys. Rev. Lett. 93, 080402–080406. Hayashi, T., Fukuda, N., Uchiyama, S., Inada, N., 2015. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines. PLoS One 10, E0117677. Heyes, A.L., 2009. On the design of phosphors for high-temperature thermometry. J. Lumin. 129, 2004–2009. Homma, M., Takei, Y., Murata, A., Inoue, T., Takeoka, S., 2015. A ratiometric fluorescent molec- ular probe for visualization of mitochondrial temperature in living cells. Chem. Commun. 51, 6194–6197. Hu, X.L., Li, Y., Liu, T., Zhang, G.Y., Liu, S.Y., 2015. Intracellular cascade FRET for tempera- ture imaging of living cells with polymeric ratiometric fluorescent thermometers. ACS Appl. Mater. Interfaces 7, 15551–15560. Huang, H., Delikanli, S., Zeng, H., Ferkey, D.M., Pralle, A., 2010. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606. Huang, F., Gao, Y., Zhou, J.C., Xua, J., Wang, Y.S., 2015a. Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing. J. Alloys Compd. 639, 325–329. Huang, Y., Rosei, F., Vetrone, F., 2015b. A single multifunctional nanoplatform based on upcon- version luminescence and gold nanorods. Nanoscale 7, 5178–5185. Il Park, Y., Lee, K.T., Suh, Y.D., Hyeon, T., 2015. Upconverting nanoparticles: a versatile plat- form for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, 1302–1317. Ishiwada, N., Fujioka, S., Ueda, T., Yokomori, T., 2011. Co-doped Y2O3:Tb3+/Tm3+ multicolor emitting phosphors for thermometry. Opt. Lett. 36, 760–762. Jaque, D., Vetrone, F., 2012. Luminescence nanothermometry. Nanoscale 4, 4301–4326. Jaque, D., del Rosal, B., Rodriguez, E.M., Maestro, L.M., Haro-Gonzalez, P., Sole, J.G., 2014a. Fluorescent nanothermometers for intracellular thermal sensing. Nanomedicine 9, 1047–1062.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |