
PDF Publication Title:
Text from PDF Page: 450
Lanthanides in Luminescent Thermometry Chapter 281 415 Edge, A.C., Laufer, G., Krauss, R.H., 2000. Surface temperature-field imaging with laser-induced thermographic phosphorescence. Appl. Optics 39, 546–553. Escribano, P., Julia ́n-Lo ́pez, B., Planelles-Arago ́, J., Cordoncillo, E., Viana, B., Sanchez, C., 2008. Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic– inorganic materials. J. Mater. Chem. 18, 23–40. Falcaro, P., Ricco, R., Doherty, C.M., Liang, K., Hill, A.J., Styles, M.J., 2014. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560. Farzaneh, M., Maize, K., Luerssen, D., Summers, J.A., Mayer, P.M., Raad, P.E., Pipe, K.P., Shakouri, A., Ram, R.J., Hudgings, J.A., 2009. CCD-based thermoreflectance microscopy: principles and applications. J. Phys. D Appl. Phys. 42, 143001. Feng, J., Zhang, H.J., 2013. Hybrid materials based on lanthanide organic complexes: a review. Chem. Soc. Rev. 42, 387–410. Feng, J., Tian, K.J., Hu, D.H., Wang, S.Q., Li, S.Y., Zeng, Y., Li, Y., Yang, G.Q., 2011. A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew. Chem. Int. Ed. 50, 8072–8076. Feng, J., Xiong, L., Wang, S., Li, S., Li, Y., Yang, G., 2013. Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale. Adv. Funct. Mater. 23, 340–345. Ferreira, R.A.S., Brites, C.D.S., Vicente, C.M.S., Lima, P.P., Bastos, A.R.N., Marques, P.G., Hiltunen, M., Carlos, L.D., Andre, P.S., 2013. Photonic-on-a-chip: a thermal actuated Mach–Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic–inorganic hybrid. Laser Photon. Rev. 7, 1027–1035. Fischer, L.H., Harms, G.S., Wolfbeis, O.S., 2011. Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 50, 4546–4551. Gao, Y.H., Bando, Y., Liu, Z.W., Golberg, D., Nakanishi, H., 2003. Temperature measure- ment using a gallium-filled carbon nanotube nanothermometer. Appl. Phys. Lett. 83, 2913–2915. Glawdel, T., Almutairi, Z., Wang, S., Ren, C., 2009. Photobleaching absorbed rhodamine B to improve temperature measurements in PDMS microchannels. Lab Chip 9, 171–174. Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J., Capobianco, J.A., 2015. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584. Goodson, K.E., Asheghi, M., 1997. Near-field optical thermometry. Microsc. Thermophys. Eng. 1, 225–235. Gorris, H.H., Ali, R., Saleh, S.M., Wolfbeis, O.S., 2011. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23, 1652–1655. Gosse, C., Bergaud, C., L€ow, P., 2009. Molecular probes for thermometry in microfluidic devices. In: Volz, S. (Ed.), Thermal Nanosystems and Nanomaterials, vol. 118. Springer-Verlag, Berlin, pp. 301–341 (Chapter 10). Gota, C., Uchiyama, S., Yoshihara, T., Tobita, S., Ohwada, T., 2008. Temperature-dependent fluorescence lifetime of a fluorescent polymeric thermometer, poly(N-isopropylacrylamide), labeled by polarity and hydrogen bonding sensitive 4-sulfamoyl-7-aminobenzofurazan. J. Phys. Chem. B 112, 2829–2836. Gota, C., Okabe, K., Funatsu, T., Harada, Y., Uchiyama, S., 2009. Hydrophilic fluorescent nano- gel thermometer for intracellular thermometry. J. Am. Chem. Soc. 131, 2766–2767. Graham, E.M., Iwai, K., Uchiyama, S., de Silva, A.P., Magennis, S.W., Jones, A.C., 2010. Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy. Lab Chip 10, 1267–1273.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |