PDF Publication Title:
Text from PDF Page: 319
REE Mineralogy and Resources Chapter 279 283 Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its con- sequences for the crust and mantle. Chem. Geol. 145, 325–394. Pointer, C.M., Ashworth, J.R., Ixer, R.A., 1988. The zircon thorite mineral group in metasoma- tized granite, Ririwai Nigeria 2. Zoning, alteration and exsolution in zircon. Mineral. Petrol. 39, 21–37. Pourret, O., Davranche, M., Gruau, G., Dia, A., 2007a. Competition between humic acid and car- bonates for rare earth elements complexation. J. Colloid Interface Sci. 305, 25–31. Pourret, O., Davranche, M., Gruau, G., Dia, A., 2007b. Rare earth elements complexation with humic acid. Chem. Geol. 243, 128–141. Preston, J.S., Cole, P.M., Craig, W.M., Feather, A.M., 1996. The recovery of rare earth oxides from a phosphoric acid XE “phosphoric acid” by-product XE “by-product”. Hydrometallurgy 41, 1–19. Price, J.G., Rubin, J.N., Henry, C.D., Pinkston, T.L., Weedy, S.W., Koppenaal, D.W., 1990. Rare- metal enriched peraluminous rhyolites in a continental arc, Sierra Blanca area, Trans-Pecos Texas; Chemical modification by vapor-phase crystallization. Geol. Soc. Am. Spec. Pap. 246, 103–120. Price, J.D., Hogan, J.P., Gilbert, M.C., London, D., Morgan, G.B.V.I., 1999. Experimental study of titanite–fluorite equilibria in the A-type Mount Scott Granite; implications for assessing F contents of felsic magma. Geology 27, 951–954. Prowatke, S., Klemme, S., 2005. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 69, 695–709. Prowatke, S., Klemme, S., 2006. Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim. Cosmochim. Acta 70, 4997–5012. Qi, G.W., Parentich, A., Little, L.H., Warren, L.J., 1992. Selective flotation of apatite from iron oxides. Int. J. Miner. Process. 34, 83–102. Qiu, J.S., Mcinnes, B., Xu, X.S., Allen, C.M., 2004. Zircon ELA-ICP-MS dating for Wuliting Pluton at Dajishan, southern Jiangxi and new recognition about its relation to tungsten mineralization. Geol. Rev. 50, 125–133 (in Chinese with English abstract). Quirt, D., Korzer, T., Kyser, T.K., 1991. Tourmaline, phosphate minerals, zircon and pitchblende in the Athabasca Group: Maw Zone and McArthur River Areas, Saskatchewan. Summary of Investigations 1991, Saskatchewan Geological Survey, Saskatchewan Energy Mines, Miscellaneous Report, 91-4, pp. 181–191. Rakovan, J., Hughes, J.M., 2000. Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Can. Mineral. 38, 839–845. Rankin, A.H., 2005. Carbonatite-associated rare metal deposits: composition and evolution of ore- forming fluids—the fluid inclusion evidence. In: Linnen, R.L., Samson, I.M. (Eds.), Rare- Element Geochemistry and Mineral Deposits, vol. 17. Geological Association of Canada Short Course Notes, pp. 299–314. Rapp, R.P., Watson, E.B., 1986. Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib. Mineral. Petrol. 94, 304–316. Rhodes, A.L., Oreskes, N., Sheets, S., 1999. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile. Soc. Econ. Geol. Spec. Pub. 7, 299–332. Rickwood, P.C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247–263. Ridley, J., 2013. Ore Deposit Geology. Cambridge University Press, New York. 398p. Roeder, P.L., MacArthur, D., Ma, X.P., Palmer, G.R., 1987. Cathodoluminescence and micro- probe study of rare-earth elements in apatite. Am. Mineral. 72, 801–811.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)