PDF Publication Title:
Text from PDF Page: 318
282 Handbook on the Physics and Chemistry of Rare Earths Geobiological, and Materials Importance. vol. 48. Rev. Mineral. Geochem., Washington, DC, pp. 13–49. Pan, Y., Stauffer, M.R., 2000. Cerium anomaly and Th/U fractionation in the 1.85 Ga Flin Flon Paleosol: clues from REE- and U-rich accessory minerals and implications for paleoatmo- spheric reconstruction. Am. Mineral. 85, 898–911. Pan, Y., Fleet, M.E., MacRae, N., 1993. Late alteration in titanite (CaTiSiO5): redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim. Cosmochim. Acta 57, 355–367. Pandur, K., Kontak, D.J., Ansdell, K.M., 2014. Hydrothermal evolution in the Hoidas Lake vein- type REE deposit, Saskatchewan, Canada: constraints from fluid inclusion microthermometry an evaporate mound analysis. Can. Mineral. 52, 717–744. Pandur, K., Ansdell, K.M., Kontak, D.J., 2015. Graphic-textured inclusions in apatite: evidence for pegmatitic growth in a REE-enriched carbonatitic system. Geology 43, 547–550. Pearce, J.A., Peate, D.W., 1995. Tectonic implications of the composition of volcanic arc Magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285. Pearson, R.G., 1963. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539. Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the K€oppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. Peelman, S., Sun, Z.H.I., Sietsma, J., Yang, Y., 2014. Leaching of rare earth elements: past and present. In: 1st European Rare Earth Resources Conference Proceedings, pp. 446–456. Pekov, I.V., Kulikova, I.M., Kabalov, Y.K., Yeletskaya, O.V., Chukanov, N.V., Men’shikov, Y.P., Khomyakov, A.P., 1996. Belovite-(La), Sr3Na(La, Ce)(PO4)3(F, OH), a new rare earth mineral in the apatite group. Zap. Vses. Mineral. O-va. 125, 101–109. Pekov, I.V., Petersen, O.V., Voloshin, A.V., 1997. Calcio-ancylite-(Ce) from Il ́ımaussaq and Narss^arssuk, Greenland, Kola Peninsula and Polar Urals, Russia; ancylite-(Ce)-calcio- ancylite-(Ce) an isomorphous series. N. Jb. Mineral. (Abh.) 171, 309–332. Pekov, I.V., Chukanov, N.V., Kononkova, N.N., Yakubovich, O.V., Massa, W., Voloshin, A.V., 2009. Tveitite-(Y) and REE-Enriched Fluorite from amazonite pegmatites of the Western Keivy, Kola Peninsula, Russia: genetic crystal chemistry of natural Ca, REE-fluorides. Geol. Ore Deposits 51, 595–607. Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Husdal, T.A., Zadov, A.E., Pushcharovsky, D.Y., 2011. Fluorbritholite-(Y), (Y, Ca, Ln)5[(Si, P)O4]3 F, a new mineral of the britholite group. N. Jb. Mineral. (Abh.) 188, 191–197. Peng, G.Y., Juhr, J.F., McGee, J.J., 1997. Factors controlling sulfur concentrations in volcanic apatite. Am. Mineral. 82, 1210–1224. Peterson, R.C., MacFarlane, D.B., 1993. The rare-earth-element chemistry of allanite from the Grenville Province. Can. Mineral. 31, 159–166. Petrella, L., Williams-Jones, A.E., Goutier, J., Walsh, J., 2014. The nature and origin of the rare earth element mineralization in the misery syenitic intrusion, Northern Quebec, Canada. Econ. Geol. 109, 1643–1666. Petr ́ık, I., Konecˇny ́, P., 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the N ́ızke Tatry Mountains, Western Carpathians, Slovakia: chem- ical dating and evidence for disequilibrium melting. Am. Mineral. 94, 957–974. Pfaff, K., Krumrei, T., Marks, M., Wenzel, T., Rudolf, T., Markl, G., 2008. Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Il ́ımaussaq intrusion, South Greenland: implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 106, 280–296.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)