logo

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

PDF Publication Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS ( handbook-onphysics-and-chemistry-rare-earths )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 307

REE Mineralogy and Resources Chapter 279 271 Emsbo, P., McLaughlin, P.I., du Bray, E.A., Anderson, E.D., Vandenbroucke, T.R.A., Zielinski, R.A., 2016. Rare earth elements in sedimentary phosphorite deposits: A global assessment. Rev. Econ. Geol. 18, 101–113. Ercit, T.S., 2005. REE-enriched granitic pegmatite. In: Linnen, R.L., Samson, I.M. (Eds.), Rare- Element Geochemistry and Mineral Deposits, vol. 17. Geological Association of Canada, Short Course Notes, St John’s, pp. 175–199. Ernst, R.E., Bell, K., 2010. Large igneous province (LIPs) and carbonatite XE “carbonatite”s. Mineral. Petrol. 98, 55–76. European Commission, 2010. Critical Raw Materials for the EU. European Commission Enterprise and Industry, Brussels, Belgium, 85p. European Fertilizers Manufacturers Association (EFMA), 2000. Best available techniques for pol- lution prevention and control in the european fertilizer industry: booklet no. 4 of 8: produc- tion of phosphoric acid. EFMA, Brussels, pp. 1–44. Ewing, R.C., 1994. The metamict state: 1993—the centennial. Nucl. Instrum. Methods Phys. Res. B91, 22–29. Ewing, R.C., 1999. Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. 96, 3432–3439. Ewing, R.C., Haaker, R.F., Lutze, W., 1981. Leachability of zircon as a function of alpha dose. MRS Proc. 11, 389. Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J., Corrales, L.R., 2003. Radiation effects in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), vol. 53. Rev. Mineral. Geochem., Washington, DC, pp. 387–425. Felsche, F., 1972. Rare earth silicates with apatite structure. J. Solid State Chem. 5, 266–275. Femenias, O., Coussaert, N., Brassinnes, S., Demaiffe, D., 2005. Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia). Lithos 83, 371–393. Feng, Z.H., Wang, C.Z., Zhang, M.H., Liang, J.C., 2012. Unusually dumbbell-shaped Guposhan- Huashan twin granite plutons in Nanling Range of south China: discussion on their incremen- tal emplacement and growth mechanism. J. Asia Earth Sci. 48, 9–23. Ferris, A.P., Jepson, W.B., 1975. The exchange capacities of kaolinite and the preparation of homoionic clays. J. Colloid Interface Sci. 51, 245–259. Finch, R.J., Hanchar, J.M., 2003. The composition of zircon and igneous and metamorphic petro- genesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon, vol. 53. Rev. Mineral. Geochem., Washington, DC, pp. 1–25 Finger, F., Broska, I., Roberts, M.P., Schermaier, A., 1998. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am. Mineral. 83, 248–258. Fleet, M.E., Pan, Y., 1995. Site preference of rare earth elements in fluorapatite. Am. Mineral. 80, 329–335. F€orster, H.-J., 1998. The chemical composition of REE-Y-Th-U-rich accessory minerals in pera- luminous granites of the Erzgebirge-Fichtelgebirge region, Germany, part I: the monazite XE “monazite” -(Ce)-brabantite solid solution series. Am. Mineral. 83, 259–272. F€orster, H.-J., 2000. Cerite-(Ce) and thorian synchysite XE “synchysite”-(Ce) from the Niederbo- britzsch granite, Erzgebirge, Germany: implications for the differential mobility of the LREE and Th during alteration. Can. Mineral. 38, 67–79. F€orster, H.-J., 2006. Composition and origin of intermediate solid solutions in the system thorite- xenotime-zircon-coffinite. Lithos 88, 35–55. Franz, G., Andrehs, G., Rhede, D., 1996. Crystal chemistry of monazite and xenotime from Saxothuringian–Moldanubian metapelites, NE Bavaria, Germany. Eur. J. Mineral. 8, 1097–1108.

PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

handbook-onphysics-and-chemistry-rare-earths-307

PDF Search Title:

HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS

Original File Name Searched:

Chemistry-Rare-Earths-49.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP