PDF Publication Title:
Text from PDF Page: 306
270 Handbook on the Physics and Chemistry of Rare Earths De Oliveira, S.M.B., Imbernon, R.A.L., 1998. Weathering alteration and related REE concentra- tion in the Catala ̃o I carbonatite complex, central Brazil. J. S. Am. Earth Sci. 4, 379–388. Della-Ventura, G., Williams, C.T., Cabella, R., Oberti, R., Caprilli, E., Bellatreccia, F., 1999. Britholite-hellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy): petrological implications bearing on REE mobility in volcanic systems. Eur. J. Mineral. 11, 843–854. Demartin, F., Pilati, T., Diella, V., Gentile, P., Gramaccioli, C.M., 1993. A crystal chemical inves- tigation of alpine gadolinite. Can. Mineral. 30, 127–136. Demeny, A., Vennemann, T.W., Hegner, E., Nagym, G., Milton, J.A., Embey-Isztin, A., Homonnay, Z., Dobosi, G., 2004. Trace element and C-O-Sr-Nd isotope evidence for subduction-related carbonate-silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75, 89–113. Deng, Z.C., 1988. Characteristics and genesis of the Datian HREE granite, southern Jiangxi. J. Guilin Coll. Geol. 8, 39–48 (in Chinese with English abstract). Deng, J., 2013. Geological characteristics and metallogenic conditions of the Xiache REE depos- its in Heping County, Guangdong Province. Earth 5, 5 (in Chinese). Dill, H.G., 2001. The geology of aluminium phosphates and sulphates of the alunite group miner- als: a review. Earth Sci. Rev. 53, 35–93. Ding, J.Y., 2012. Historical review of the ionic rare earth mining: in honor of the 60 anniversary of GNMR. Nonferrous Met. Sci. Eng. 3, 14–19 (in Chinese with English abstract). Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., Demaiffe, D., 2005. Petrogenetic pro- cesses in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: a review. Lithos 85, 48–75. Du, X., Rate, A.W., Gee, M.A.M., 2012. Redistribution and mobilization of titanium, zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chem. Geol. 330–331, 101–115. Duncan, R.K., Willett, G.C., 1990. Mount Weld carbonatite. In: Hughes, F.E. (Ed.), Geology of the Mineral Deposits of Australia and Papua New Guinea. The Australasian Institute of Mining and Metallurgy, Melbourne, pp. 591–597. Dymek, R.F., Owens, B.E., 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with massif anorthosites. Econ. Geol. 96, 797–815. Edfelt, A ̊ ., Armstrong, R.N., Smith, M., Martinsson, O., 2005. Alteration paragenesis and mineral chemistry of the Tja ̊rroja ̊kka apatite-iron and Cu (Au) occurrences, Kiruna area, northern Sweden. Miner. Deposita 40, 409–434. Einsele, G., 2000. Sedimentary Basins: Evolution, Facies, and Sediment Budget, second, completely revised and enlarged ed. Springer, Berlin/Heidelberg/New York/London/Paris/ Tokyo/Hong Kong. 792p. Eliopoulos, D., Economou, G., Tzifas, I., Papatrechas, C., 2014. The potential of rare earth ele- ments in Greece. In: Extended Abstract of ERES2014: 1st European Rare Earth Resources Conference, Milos, 04–07/09/2014, pp. 308–316. Elliott, J.C., 1994. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam. Elsner, H., Buxhholz, P., Schmitz, M., Altangerel, T., 2011. Rare earths. In: Industrial Minerals and Selected Rare Metals in Mongolia, An Investors’ Guide. The Government of Mongolia, Ulaanbaatar, pp. 248–265. Emsbo, P., McLaughlin, P.I., Breit, G.N., du Bray, E.A., Koenig, A.E., 2015. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis? Gondwana Res. 27, 776–785.PDF Image | HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHS
PDF Search Title:
HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE EARTHSOriginal File Name Searched:
Chemistry-Rare-Earths-49.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |