logo

Accumulateur Lithium Soufre

PDF Publication Title:

Accumulateur Lithium Soufre ( accumulateur-lithium-soufre )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 251

(236) Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica Acta 1999, 45, 67-86. (237) Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147, 269-281. (238) http://geology.com/minerals/mohs-hardness-scale.shtml (239) Hassoun, J.; Scrosati, B. Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 2010, 22, 5198-5201. (240) Yang, Z.; Guo, J.; Das, S. K.; Yu, Y.; Zhou, Z.; Abruna, H. D.; Archer, L. A. In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A 2013, 1, 1433-1440. (241) Feng, Z.; Kim, C.; Vijh, A.; Armand, M.; Bevan, K. H.; Zaghib, K. Unravelling the role of Li2S2 in lithium–sulfur batteries: A first principles study of its energetic and electronic properties. Journal of Power Sources 2014, 272, 518-521. (242) Han, K.; Shen, J.; Hayner, C. M.; Ye, H.; Kung, M. C.; Kung, H. H. Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries. Journal of Power Sources 2014, 251, 331-337. (243) Zhang, K.; Wang, L.; Hu, Z.; Cheng, F.; Chen, J. Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries. Scientific reports 2014, 4, 6467. (244) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Oxidation process of polysulfides in charge process for lithium–sulfur batteries. Ionics 2012, 18, 867-872. (245) Akridge, J. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 2004, 175, 243-245. (246) Kumaresan, K.; Mikhaylik, Y.; White, R. E. A Mathematical Model for a Lithium–Sulfur Cell. Journal of The Electrochemical Society 2008, 155, A576. (247) Sciamanna, S. F.; Lynn, S. Sulfur solubility in pure and mixed organic solvents. Industrial & Engineering Chemistry Research 1988, 27, 485-491. (248) Schweikert, N.; Hahn, H.; Indris, S. Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy. Physical chemistry chemical physics : PCCP 2011, 13, 6234- 6240. (249) Woo, J. J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z. Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries Beyond Lithium-Ion. Journal of the Electrochemical Society 2014, 161, A827-A830. (250) Ghaznavi, M.; Chen, P. Analysis of a Mathematical Model of Lithium-Sulfur Cells Part III: Electrochemical Reaction Kinetics, Transport Properties and Charging. Electrochimica Acta 2014, 137, 575-585. (251) Mikhaylik, Y. V.; Akridge, J. R. Low Temperature Performance of Li/S Batteries. Journal of The Electrochemical Society 2003, 150, A306. (252) Sadeghi, R.; Taghi Zafarani-Moattar, M. Thermodynamics of aqueous solutions of polyvinylpyrrolidone. The Journal of Chemical Thermodynamics 2004, 36, 665-670. References 247

PDF Image | Accumulateur Lithium Soufre

accumulateur-lithium-soufre-251

PDF Search Title:

Accumulateur Lithium Soufre

Original File Name Searched:

WALUS_2015_archivage.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP