PDF Publication Title:
Text from PDF Page: 250
(216) http://www.freudenberg.com. (217) Wang, L.; Zhao, Y.; Thomas, M. L.; Byon, H. R. In Situ Synthesis of Bipyramidal Sulfur with 3D Carbon Nanotube Framework for Lithium-Sulfur Batteries. Advanced Functional Materials 2014, 24, 2248-2252. (218) http://www.showa-denko.com/. (219) Xu, T.; Song, J.; Gordin, M. L.; Sohn, H.; Yu, Z.; Chen, S.; Wang, D. Mesoporous carbon- carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. ACS applied materials & interfaces 2013, 5, 11355-11362. (220) Dornbusch, D. A.; Hilton, R.; Gordon, M. J.; Suppes, G. J. Effects of carbon surface area on performance of lithium sulfur battery cathodes. Journal of Industrial and Engineering Chemistry 2013, 19, 1968-1972. (221) Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries--a review. Chemical communications 2013, 49, 10545-10562. (222) Liu, Z. H.; Maréchal, P.; Jéroˆme, R. Blends of poly(vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties. Polymer 1998, 39, 1779-1785. (223) Sadhu, S.; Bhowmick, A. K. Preparation and properties of styrene–butadiene rubber based nanocomposites: The influence of the structural and processing parameters. Journal of Applied Polymer Science 2004, 92, 698-709. (224) Experimental Spectroscopy (225) spectroscopy (226) Ogihara, N.; Kawauchi, S.; Okuda, C.; Itou, Y.; Takeuchi, Y.; Ukyo, Y. Theoretical and Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Using a Symmetric Cell. Journal of the Electrochemical Society 2012, 159, A1034-A1039. Song, J. Y.; Lee, H. H.; Wang, Y. Y.; Wan, C. C. Two- and three-electrode impedance of lithium-ion batteries. Journal of Power Sources 2002, 111, 255-267. Schweikert, N.; Hahn, H.; Indris, S. Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics 2011, 13, 6234-6240. (227) Peng, L.-l.; Liu, G.-b.; Wang, Y.; Xu, Z.-l.; Liu, H. A comparison of sulfur loading method on the electrochemical performance of porous carbon/sulfur cathode material for lithium–sulfur battery. Journal of Solid State Electrochemistry 2013, 18, 935-940. (228) Levi, M. D.; Aurbach, D. Impedance of a Single Intercalation Particle and of Non- Homogeneous, Multilayered Porous Composite Electrodes for Li-ion Batteries. The Journal of Physical Chemistry B 2004, 108, 11693-11703. (229) Seid, K. A.; Badot, J. C.; Dubrunfaut, O.; Levasseur, S.; Guyomard, D.; Lestriez, B. Multiscale electronic transport mechanism and true conductivities in amorphous carbon-LiFePO4 nanocomposites. Journal of Materials Chemistry 2012, 22, 2641-2649. (230) Patoux, S.; Daniel, L.; Bourbon, C.; Lignier, H.; Pagano, C.; Le Cras, F.; Jouanneau, S.; Martinet, S. High voltage spinel oxides for Li-ion batteries: From the material research to the application. Journal of Power Sources 2009, 189, 344-352. (231) Fishman, Z.; Hinebaugh, J.; Bazylak, A. Microscale Tomography Investigations of Heterogeneous Porosity Distributions of PEMFC GDLs. Journal of The Electrochemical Society 2010, 157, B1643-B1650. (232) Wei Seh, Z.; Li, W.; Cha, J. J.; Zheng, G.; Yang, Y.; McDowell, M. T.; Hsu, P.-C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature communications 2013, 4, 1331. (233) Liu, N.; Hu, L.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries. ACS Nano 2011, 5, 6487-6493. (234) Etacheri, V.; Geiger, U.; Gofer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir : the ACS journal of surfaces and colloids 2012, 28, 6175-6184. (235) Radvanyi, E.; Porcher, W.; De Vito, E.; Montani, A.; Franger, S.; Jouanneau Si Larbi, S. Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model. Physical chemistry chemical physics : PCCP 2014, 16, 17142-17153. 246 ReferencesPDF Image | Accumulateur Lithium Soufre
PDF Search Title:
Accumulateur Lithium SoufreOriginal File Name Searched:
WALUS_2015_archivage.pdfDIY PDF Search: Google It | Yahoo | Bing
Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |