logo

Quantum-Mechanical of the Energetics of Silver Decahedron Nanoparticles

PDF Publication Title:

Quantum-Mechanical of the Energetics of Silver Decahedron Nanoparticles ( quantum-mechanical-energetics-silver-decahedron-nanoparticle )

Next Page View | Return to Search List

Text from PDF Page: 001

nanomaterials Article Quantum-Mechanical Assessment of the Energetics of Silver Decahedron Nanoparticles Svatava Polsterová 1, Martin Friák 2,3,* , Monika Všianská 1,2 and Mojmír Šob 1,3,4 1 2 3 4 * Correspondence: friak@ipm.cz; Tel.: +420-532-290-400 Received: 14 February 2020; Accepted: 7 April 2020; Published: 16 April 2020 Department of Chemistry, Faculty of Science, Masaryk University, Kotlárˇská 2, 611 37 Brno, Czech Republic; polsterova@mail.muni.cz (S.P.); 230038@mail.muni.cz (M.V.); mojmir@ipm.cz (M.Š.) Central European Institute of Technology, CEITEC IPM, Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 62 Brno, Czech Republic Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 616 62 Brno, Czech Republic Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic Abstract: We present a quantum-mechanical study of silver decahedral nanoclusters and nanoparticles containing from 1 to 181 atoms in their static atomic configurations corresponding to the minimum of the ab initio computed total energies. Our thermodynamic analysis compares T=0K excess energies (without any excitations) obtained from a phenomenological approach, which mostly uses bulk-related properties, with excess energies from ab initio calculations of actual nanoclusters/nanoparticles. The phenomenological thermodynamic modeling employs (i) the bulk reference energy, (ii) surface energies obtained for infinite planar (bulk-related) surfaces and (iii) the bulk atomic volume. We show that it can predict the excess energy (per atom) of nanoclusters/nanoparticles containing as few as 7 atoms with the error lower than 3%. The only information related to the nanoclusters/nanoparticles of interest, which enters the phenomenological modeling, is the number of atoms in the nanocluster/nanoparticle, the shape and the crystallographic orientation(s) of facets. The agreement between both approaches is conditioned by computing the bulk-related properties with the same computational parameters as in the case of the nanoclusters/nanoparticles but, importantly, the phenomenological approach is much less computationally demanding. Our work thus indicates that it is possible to substantially reduce computational demands when computing excess energies of nanoclusters and nanoparticles by ab initio methods. Keywords: nanoparticles; thermodynamics; silver; decahedron; excess energy; ab initio calculations 1. Introduction The silver nanoparticles are widely used as antiviral agents [1,2], sensors [3,4], catalysts [5], as nanoparticle solders [6,7] as well as in numerous others application. Nanoclusters, as extreme cases of nanoparticles, have a yet greater surface/volume ratio and different geometries and electronic structures when compared with their bulk counterparts. Theoretical computations constitute a very advantageous tool when studying nanoclusters as they can accurately determine many of their characteristics, such as their surface type, strain energies [8,9], phase diagrams [10] or information on their catalytic activity. Many studies reported that modifications of the surface energy can change the shape of a (nano-)particle and/or its melting temperature [11–13]. The surface energy of a nanoparticle is often considered as the most important factor in catalysis, crystal growth, sintering and other surface-related processes. The most stable surface geometry for nanoparticles of pure fcc transition metals is the {111} facet [14] but the situation can differ in multi-component cases [15]. 􏰁􏰂􏰃 􏰅􏰆􏰇 􏰈􏰉􏰊􏰋􏰌􏰂􏰍 Nanomaterials 2020, 10, 767; doi:10.3390/nano10040767 www.mdpi.com/journal/nanomaterials

PDF Image | Quantum-Mechanical of the Energetics of Silver Decahedron Nanoparticles

quantum-mechanical-energetics-silver-decahedron-nanoparticle-001

PDF Search Title:

Quantum-Mechanical of the Energetics of Silver Decahedron Nanoparticles

Original File Name Searched:

nanomaterials-10-00767-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Turbine and System Plans CAD CAM: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. More Info

Waste Heat Power Technology: Organic Rankine Cycle uses waste heat to make electricity, shaft horsepower and cooling. More Info

All Turbine and System Products: Infinity Turbine ORD systems, turbine generator sets, build plans and more to use your waste heat from 30C to 100C. More Info

CO2 Phase Change Demonstrator: CO2 goes supercritical at 30 C. This is a experimental platform which you can use to demonstrate phase change with low heat. Includes integration area for small CO2 turbine, static generator, and more. This can also be used for a GTL Gas to Liquids experimental platform. More Info

Introducing the Infinity Turbine Products Infinity Turbine develops and builds systems for making power from waste heat. It also is working on innovative strategies for storing, making, and deploying energy. More Info

Need Strategy? Use our Consulting and analyst services Infinity Turbine LLC is pleased to announce its consulting and analyst services. We have worked in the renewable energy industry as a researcher, developing sales and markets, along with may inventions and innovations. More Info

Made in USA with Global Energy Millennial Web Engine These pages were made with the Global Energy Web PDF Engine using Filemaker (Claris) software.

Infinity Turbine Developing Spinning Disc Reactor SDR or Spinning Disc Reactors reduce processing time for liquid production of Silver Nanoparticles.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP