logo

Silicon-Induced Mitigation of NaCl Stress in Barley

PDF Publication Title:

Silicon-Induced Mitigation of NaCl Stress in Barley ( silicon-induced-mitigation-nacl-stress-barley )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Plants 2022, 11, 2379 17 of 18 34. Raza, M.M.; Ullah, S.; Tariq, A.; Abbas, T.; Yousaf, M.M.; Altay, V.; Ozturk, M. Alleviation of Salinity Stress in Maize Using Silicon Nutrition. Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 1340–1347. [CrossRef] 35. Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol. Plant. 2021, 172, 587–602. [CrossRef] [PubMed] 36. Belouchrani, A.S.; Bouderbala, A.; Drouiche, N.; Lounici, H. The interaction effect to fertilization on the mineral nutrition of canola under different salinity levels. J. Plant Growth Regul. 2021, 40, 848–854. [CrossRef] 37. Noreen, S.; Sultan, M.; Akhter, M.S.; Shah, K.H.; Ummara, U.; Manzoor, H.; Ulfat, M.; Alyemeni, M.N.; Ahmad, P. Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol. Biochem. 2021, 158, 244–254. [CrossRef] [PubMed] 38. Yan, G.; Fan, X.; Peng, M.; Yin, C.; Xiao, Z.; Liang, Y. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 2020, 11, 260. [CrossRef] 39. Laifa, I.; Hajji, M.; Farhat, N.; Elkhouni, A.; Smaoui, A.; M’nif, A.; Hamzaoui, A.H.; Savouré, A.; Abdelly, C.; Zorrig, W. Beneficial Effects of Silicon (Si) on Sea Barley (Hordeum marinum Huds.) under Salt Stress. Silicon 2020, 13, 4501–4517. [CrossRef] 40. Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. [CrossRef] 41. Narimani, T.; Toorchi, M.; Tarinejad, A.; Mohammadi, S.; Mohammadi, H. Physiological and Biochemical Evaluation of Barley (Hordeum vulgare L.) under Salinity Stress. J. Agric. Sci. Technol. 2020, 22, 1009–1021. 42. Xu, R.; Yamada, M.; Fujiyama, H. Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress. Pedosphere 2013, 23, 213–222. [CrossRef] 43. AbdElgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R.; Asard, H.; Abuelsoud, W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front. Plant Sci. 2016, 7, 276. [CrossRef] 44. Conceição, S.S.; Oliveira Neto, C.F.d.; Marques, E.C.; Barbosa, A.V.C.; Galvão, J.R.; Oliveira, T.B.d.; Okumura, R.S.; Martins, J.T.d.S.; Costa, T.C.; Gomes-Filho, E. Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Archiv. Agron. Soil Sci. 2019, 65, 1237–1247. [CrossRef] 45. Jacoby, R.P.; Millar, A.H.; Taylor, N.L. Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J. Prot. Res. 2010, 9, 6595–6604. [CrossRef] 46. Radi, A.A.; Farghaly, F.A.; Hamada, A.M. Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J. Biol. Earth Sci. 2013, 3, 72–88. 47. Meng, Y.; Yin, Q.; Yan, Z.; Wang, Y.; Niu, J.; Zhang, J.; Fan, K. Exogenous Silicon Enhanced Salt Resistance by Maintaining K+/Na+ Homeostasis and Antioxidant Performance in Alfalfa Leaves. Front. Plant Sci. 2020, 11, 1183. [CrossRef] [PubMed] 48. Abdel-Haliem, M.E.; Hegazy, H.S.; Hassan, N.S.; Naguib, D.M. Effect of silica ions and nano silica on rice plants under salinity stress. Eco. Eng. 2017, 99, 282–289. [CrossRef] 49. Li, H.; Zhu, Y.; Hu, Y.; Han, W.; Gong, H. Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol. Plant. 2015, 37, 71. [CrossRef] 50. Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.; Mottaleb, S.A. Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy 2020, 10, 19. [CrossRef] 51. Basilio-Apolinar, A.; Vara, L.E.G.-d.l.; Ramírez-Pimentel, J.G.; Aguirre-Mancilla, C.L.; Iturriaga, G.; Covarrubias-Prieto, J.; Raya-Pérez, J.C. Silicon induces changes in the antioxidant system of millet cultivated in drought and salinity. Chilean J. Agric. Res. 2021, 81, 655–663. [CrossRef] 52. Younas, H.S.; Abid, M.; Shaaban, M.; Ashraf, M. Influence of silicon and chitosan on growth and physiological attributes of maize in a saline field. Physiol. Mol. Bio. Plants 2021, 27, 387–397. [CrossRef] 53. El Moukhtari, A.; Carol, P.; Mouradi, M.; Savoure, A.; Farissi, M. Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. Symbiosis 2021, 85, 305–324. [CrossRef] 54. Zia, A.; Hegazy, H.S.; Hassan, N.S.; Naguib, D.M.; Abdel-Haliem, M.E. Biochemical responses of wheat to silicon application under salinity. J. Plant Nutr. Soil Sci. 2021, 184, 255–262. [CrossRef] 55. Kafi, M.; Nabati, J.; Masoumi, A.; Mehrgerdi, M.Z. Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench.]. Pak. J. Bot. 2011, 43, 2457–2462. 56. Liang, Y.; Zhang, W.; Chen, Q.; Liu, Y.; Ding, R. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ. Exp. Bot. 2006, 57, 212–219. [CrossRef] 57. Morgan, S.H.; Maity, P.J.; Geilfus, C.-M.; Lindberg, S.; Mühling, K.H. Leaf ion homeostasis and plasma membrane H+-ATPase activity in Vicia faba change after extra calcium and potassium supply under salinity. Plant Physiol. Biochem. 2014, 82, 244–253. [CrossRef] 58. Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [CrossRef] 59. Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Maximova, E.; Fuggi, A.; Carillo, P. Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front. Plant Sci. 2017, 7, 2035. [CrossRef] 60. Fan, Y.; Zhu, M.; Shabala, S.; Li, C.; Johnson, P.; Zhou, M. Antioxidant Activity in Salt-Stressed Barley Leaves: Evaluating Time- and Age-Dependence and Suitability for the Use as a Biochemical Marker in Breeding Programs. J. Agron. Crop Sci. 2014, 200, 261–272. [CrossRef]

PDF Image | Silicon-Induced Mitigation of NaCl Stress in Barley

silicon-induced-mitigation-nacl-stress-barley-017

PDF Search Title:

Silicon-Induced Mitigation of NaCl Stress in Barley

Original File Name Searched:

plants-11-02379.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP