PDF Publication Title:
Text from PDF Page: 011
D.-H. Nam, M.A. Lumley and K.-S. Choi Energy Storage Materials 37 (2021) 556–566 [18] F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang, H.Y. Yang, Dual-ions electrochemical deionization: a desalination generator, Energy Environ. Sci. 10 (2017) 2081–2089. [19] S. Kim, H. Yoon, D. Shin, J. Lee, J. Yoon, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide, J. Colloid Interface Sci. 506 (2017) 644–648. [20] F. Chen, Y. Huang, L. Guo, M. Ding, H.Y. Yang, A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes, Nanoscale 9 (2017) 10101–10108. [21] W. Zhao, L. Guo, M. Ding, Y. Huang, H.Y. Yang, Ultrahigh desalination-capacity dual-ion electrochemical deionization device based on Na3 V2 (PO4 )3 @C−AgCl elec- trodes, ACS Appl. Mater. Interfaces 10 (2018) 40540–40548. [22] L. Wang, C. Mu, H. Li, F. Li, A dual-function battery for desalination and energy storage, Inorg. Chem. Front. 5 (2018) 2522–2526. [23] F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang, H.Y. Yang, NaTi2 (PO4 )3 -Ag elec- trodes based desalination battery and energy recovery, FlatChem 8 (2018) 9–16. [24] D.–H. Nam, M.A. Lumley, K.–S. Choi, A desalination battery combining Cu3[Fe(CN)6]2 as a na-storage electrode and Bi as a Cl-storage electrode enabling membrane-free desalination, Chem. Mater. 31 (2019) 1460–1468. [25] Y.X. Huang, F. Chen, L. Guo, J. Zhang, T.P. Chen, H.Y. Yang, Low energy consump- tion dual-ion electrochemical deionization system using NaTi2 (PO4 )3 −AgNPs elec- trodes, Desalination 451 (2019) 241–247. [26] M. Suss, V. Presser, Water desalination with energy storage electrode materials, Joule 2 (2018) 10–15. [27] P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Charge transfer materials for electrochemical water desalination, ion separation and the recovery of elements, Nat. Rev. Mater. 5 (2020) 517–538. [28] D.–H. Nam, M.A. Lumley, K.–S. Choi, Electrochemical redox cells capable of desali- nation and energy storage: Addressing challenges of the water–energy nexus, ACS Energy Lett. 6 (2021) 1034–1044. [29] Z. Li, D. Young, K. Xiang, W.C. Carter, Y.–M. Chiang, Towards high power high energy aqueous sodium-ion batteries: The NaTi2 (PO4 )3 /Na0.44 MnO2 system, Adv. Energy. Mater. 3 (2013) 290–294. [30] H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, A-Na3 M2 (PO4 )3 (M = Ti, Fe): Absolute cationic ordering in NASICON-type phases, J. Am. Chem. Soc. 133 (2011) 11900–11903. [31] S.I. Park, I. Gocheva, S. Okada, J.–I Yamaki, Electrochemical properties of NaTi2 (PO4 )3 anode for rechargeable aqueous sodium-ion batteries, J. Electrochem. Soc. 158 (2011) A1067–A1070. [32] Z. Li, D.B. Ravnsbæk, K. Xiang, Y.–M. Chiang, Na3 Ti2 (PO4 )3 as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries, Electrochem. Commun. 44 (2014) 12–15. [33] D.–H. Nam, K.–S. Choi, Electrochemical desalination using Bi/BiOCl electrodialysis cells, ACS Sustainable Chem. Eng. 6 (2018) 15455–15462. [34] D.–H. Nam, D. Lee, K.–S. Choi, Electrochemical and photoelectrochemical ap- proaches for the selective removal, recovery, and valorization of chloride ions, Chem. Eng. J. 404 (2021) 126378. [35] S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos, B. Bolto, O. Barron, Desali- nation techniques - a review of the opportunities for desalination in agriculture, Desalination 364 (2015) 2–16. [36] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of the-art of reverse osmosis desalination, Desalination 216 (2007) 1–76. [37] C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanopar- ticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett. 11 (2011) 5421–5425. [38] H.–W. Lee, M. Pasta, R.Y. Wang, R. Ruffo, Y. Cui, Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes, Faraday Discuss. 176 (2014) 69–81. [39] B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, Y. Jiang, Prussian blue analogs for rechargeable batteries, iScience 3 (2018) 110–133. [40] J. Lee, S. Kim, J. Yoon, Rocking chair desalination battery based on Prussian blue electrodes, ACS Omega 2 (2017) 1653–1659. [41] M.A. Lumley, D.–H. Nam, K.–S. Choi, Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater de- salination, ACS Appl. Mater. Interfaces 12 (2020) 36014–36025. [42] A.I. Mohamed, N.J. Sansone, B. Kuei, N.R. Washburn, J.E. Whitacre, Using polypyr- role coating to improve cycling stability of NaTi2 (PO4 )3 as an aqueous Na-ion anode, J. Electrochem. Soc. 162 (2015) A2201–A2207. [43] R.K.B. Karlsson, A. Cornell, Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes, Chem. Rev. 116 (2016) 2982–3028. [44] I. C. Watson, O. J. Morin, L. Henthorne, Desalting Handbook for Planners, 3rd Ed. 72; United States Department of the Interior Bureau of Reclamation; 2003. 566PDF Image | seawater battery with desalination capabilities
PDF Search Title:
seawater battery with desalination capabilitiesOriginal File Name Searched:
10279292.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)