logo

Saltwater as the energy source for low-cost batteries

PDF Publication Title:

Saltwater as the energy source for low-cost batteries ( saltwater-as-energy-source-low-cost-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Paper Journal of Materials Chemistry A 2 Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, Chem. Rev., 2011, 111, 3577–3613. 3 A. A. Akhil, G. Huff, A. B. Currier, B. C. Kaun, D. M. Rastler, S. B. Chen, A. L. Cotter, D. T. Bradshaw and W. D. Gauntlett, DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA, Sandia National Laboratories Albuquerque, NM, USA, 2013. 4 B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928–935. 5 P. J. Hall and E. J. Bain, Energy Policy, 2008, 36, 4352–4355. 6 B. D. McCloskey, J. Phys. Chem. Lett., 2015, 6, 3592–3593. 7 B. L. Ellis and L. F. Nazar, Curr. Opin. Solid State Mater. Sci., 2012, 16, 168–177. 8 H. Pan, Y.-S. Hu and L. Chen, Energy Environ. Sci., 2013, 6, 2338–2360. 9 M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947–958. 10 T. Hashimoto and K. Hayashi, Electrochim. Acta, 2015, 182, 809–814. 11 P. Hartmann, C. L. Bender, M. Vraˇcar, A. K. Du ̈rr, A. Garsuch, J. Janek and P. Adelhelm, Nat. Mater., 2013, 12, 228–232. 12 S.Ha,J.K.Kim,A.Choi,Y.KimandK.T.Lee, ChemPhysChem, 2014, 15, 1971–1982. 13 N. Ortiz-Vitoriano, T. P. Batcho, D. G. Kwabi, B. Han, N. Pour, K. P. C. Yao, C. V. Thompson and Y. Shao-Horn, J. Phys. Chem. Lett., 2015, 6, 2636–2643. 14 K. Hayashi, K. Shima and F. Sugiyama, J. Electrochem. Soc., 2013, 160, A1467–A1472. 15 F. Liang and K. Hayashi, J. Electrochem. Soc., 2015, 162, A1215–A1219. 16 S. H. Sahgong, S. Senthilkumar, K. Kim, S. M. Hwang and Y. Kim, Electrochem. Commun., 2015, 61, 53–56. 17 V. Chevrier and G. Ceder, J. Electrochem. Soc., 2011, 158, A1011–A1014. 18 B. Senthilkumar, Z. Khan, S. Park, I. Seo, H. Ko and Y. Kim, J. Power Sources, 2016, 311, 29–34. 19 H. Kim, J.-S. Park, S. H. Sahgong, S. Park, J.-K. Kim and Y. Kim, J. Mater. Chem. A, 2014, 2, 19584–19588. 20 J.-K. Kim, F. Mueller, H. Kim, D. Bresser, J.-S. Park, D.-H. Lim, G.-T. Kim, S. Passerini and Y. Kim, NPG Asia Mater., 2014, 6, e144. 21 J. K. Kim, E. Lee, H. Kim, C. Johnson, J. Cho and Y. Kim, ChemElectroChem, 2015, 2, 328–332. 22 E. Brown, A. Colling, D. Park, J. Phillips, D. Rothery and J. Wright, Seawater: its Composition, Properties and Behaviour, Butterworth-Heinemann, 1995. 23 S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859–3867. 24 V. Palomares, M. Casas-Cabanas, E. Castillo-Mart ́ınez, M. H. Han and T. Rojo, Energy Environ. Sci., 2013, 6, 2312– 2337. 25 J. Boilot, G. Collin and P. Colomban, Mater. Res. Bull., 1987, 22, 669–676. 26 A. Kuriakose, T. Wheat, A. Ahmad and J. Dirocco, J. Am. Ceram. Soc., 1984, 67, 179–183. 27 S.-M. Lee, S.-T. Lee, D.-H. Lee, S.-H. Lee, S.-S. Han and S.-K. Lim, J. Ceram. Process. Res., 2015, 16, 49–53. 28 O. Bohnke, S. Ronchetti and D. Mazza, Solid State Ionics, 1999, 122, 127–136. 29 H. Abdel-Aal, S. Sultan and I. Hussein, Int. J. Hydrogen Energy, 1993, 18, 545–551. 30 H. Abdel-Aal, K. Zohdy and M. A. Kareem, Open Fuel Cells J., 2010, 3, 1–7. 31 S. Chen, Y. Zheng, S. Wang and X. Chen, Chem. Eng. J., 2011, 172, 47–51. 32 A. R. Zeradjanin, N. Menzel, W. Schuhmann and P. Strasser, Phys. Chem. Chem. Phys., 2014, 16, 13741–13747. 33 M. V. Makarova, J. Jirkovsk ́y, M. Klementov ́a, I. Jirka, K.Macounov ́aandP.Krtil,Electrochim.Acta,2008,53, 2656–2664. 34 D. Stevens and J. Dahn, J. Electrochem. Soc., 2000, 147, 1271– 1273. 35 D. Stevens and J. Dahn, J. Electrochem. Soc., 2001, 148, A803– A811. 36 E. Irisarri, A. Ponrouch and M. Palacin, J. Electrochem. Soc., 2015, 162, A2476–A2482. This journal is © The Royal Society of Chemistry 2016 J. Mater. Chem. A, 2016, 4, 7207–7213 | 7213 View publication stats

PDF Image | Saltwater as the energy source for low-cost batteries

saltwater-as-energy-source-low-cost-batteries-008

PDF Search Title:

Saltwater as the energy source for low-cost batteries

Original File Name Searched:

A201647207-7213.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP