roadmap for sodium-ion batteries

PDF Publication Title:

roadmap for sodium-ion batteries ( roadmap-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 083

J. Phys. Energy 3 (2021) 031503 N Tapia-Ruiz et al [51] Poizot P and Dolhem F 2011 Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices Energy Environ. Sci. 4 2003–19 [52] Poizot P, Gaubicher J, Renault S, Dubois L, Liang Y and Yao Y 2020 Opportunities and challenges for organic electrodes in electrochemical energy storage Chem. Rev. 120 6490–557 [53] Tournier V et al 2020 An engineered PET depolymerase to break down and recycle plastic bottles Nature 580 216–9 [54] Zhao Q, Lu Y and Chen J 2017 Advanced organic electrode materials for rechargeable sodium-ion batteries Adv. Energy Mater. 7 1601792 [55] Rajagopalan R, Tang Y, Jia C, Ji X and Wang H 2020 Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions Energy Environ. Sci. 13 1568–92 [56] Deuchert K and Hünig S 1978 Multistage organic redox systems—a general structural principle Angew. Chem., Int. Ed. Engl. 17 875–86 [57] Wang H, Yuan S, Ma D, Huang X, Meng F and Zhang X 2014 Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries Adv. Energy Mater. 4 1301651 [58] Wu D, Zhang G, Lu D, Ma L, Xu Z, Xi X, Liu R, Liu P and Su Y 2018 Perylene diimide-diamine/carbon black composites as high performance lithium/sodium ion battery cathodes J. Mater. Chem. A 6 13613–8 [59] Banda H, Damien D, Nagarajan K, Hariharan M and Shaijumon M M 2015 A polyimide based all-organic sodium ion battery J. Mater. Chem. A 3 10453–8 [60] Lee M, Hong J, Lopez J, Sun Y, Feng D, Lim K, Chueh W C, Toney M F, Cui Y and Bao Z 2017 High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate Nat. Energy 2 861–8 [61] Wang S, Wang L, Zhu Z, Hu Z, Zhao Q and Chen J 2014 All organic sodium-ion batteries with Na4C8H2O6 Angew. Chem. 126 6002–6 [62] Song Z, Qian Y, Zhang T, Otani M and Zhou H 2015 Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries Adv. Sci. 2 1500124 [63] Kim J-K, Kim Y, Park S, Ko H and Kim Y 2016 Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries Energy Environ. Sci. 9 1264–9 [64] Kim H W, Kim H-J, Byeon H, Kim J, Yang J W, Kim Y and Kim J-K 2020 Binder-free organic cathode based on nitroxide radical polymer-functionalized carbon nanotubes and gel polymer electrolyte for high-performance sodium organic polymer batteries J. Mater. Chem. A 8 17980–6 [65] Deng W, Liang X, Wu X, Qian J, Cao Y, Ai X, Feng J and Yang H 2013 A low cost, all-organic Na-ion battery based on polymeric cathode and anode Sci. Rep. 3 2671 [66] Jouhara A, Dupré N, Gaillot A-C, Guyomard D, Dolhem F and Poizot P 2018 Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution Nat. Commun. 9 4401 [67] Franklin R E 1951 Crystallite growth in graphitizing and non-graphitizing carbons Proc. Royal Society of London Series A. Mathematical and Physical Sciences 209 196–218 [68] Stevens D A and Dahn J R 2001 J. Electrochem. Soc. 148 803–11 [69] Franklin R E 1951 Crystallite growth in graphitizing and non-graphitizing carbons Proc. R. Soc. A 209 196–218 [70] Au H et al 2020 Energy Environ. Sci. 13 3469–79 [71] Roberts S and Kendrick E 2018 The re-emergence of sodium ion batteries: testing, processing, and manufacturability Nanotechnol. Sci. Appl. 11 23–33 [72] Zhang B, Ghimbeu C M, Laberty C, Vix-Guterl C and Tarascon J-M 2016 Adv. Energy Mater. 6 1501588 [73] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K and Fujiwara K 2011 Adv. Funct. Mater. 21 3859–67 [74] Jafta C, Bridges C, Sun X G, Veith G, Paranthaman P and Dai S 2018 Abstracts of Papers of the American Chemical Society vol 256 p meeting abstract 524 [75] Gu M, Kushima A, Shao Y Y, Zhang J-G, Liu J, Browning N D, Li J and Wang C M 2013 Nano Lett. 13 5203–11 [76] Weaving J S, Lim A, Millichamp J, Neville T P, Ledwoch D, Kendrick E, McMillan P F, Shearing P R, Howard C A and Brett D J L 2020 ACS Appl. Energy Mater. 3 7474–84 [77] Stratford J M, Allan P K, Pecher O, Chater P A and Grey C P 2016 Chem. Commun. 52 12430–3 [78] Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T and Ishida H 2006 J. Power Sources 162 1322–8 [79] Morita R, Gotoh K, Kubota K, Komaba S, Hashi K, Shimizu T and Ishida H 2019 Carbon 145 712 [80] Bray J M et al 2020 Nat. Commun. 11 2083 [81] Alc ́antara R, Ortiz G F, Lavela P, Tirado J L, Stoyanova R and Zhecheva E 2006 Chem. Mater. 18 2293–301 [82] Le P M L et al 2020 Adv. Funct. Mater. 30 2001151 [83] Eshetu G G, Diemant T, Hekmatfar M, Grugeon S, Behm R J, Laruelle S, Armand M and Passerini S 2019 Nano Energy 55 327–40 [84] Zhang Z, Smith K, Jervis R, Shearing P R, Miller T S and Brett D J L 2020 ACS Appl. Mater. Interfaces 12 35132–3514 [85] QinYP,ZhuangQC,ShiYL,JiangL,SunZandSunSG2011Prog.Chem.23390–400 [86] Berkes B B, Jozwiuk A, Vracar M, Sommer H, Brezesinski T and Janek J 2015 Anal. Chem. 87 5878–83 [87] LiJT,FangJC,SuHandSunSG2011Prog.Chem.23349–56 [88] Sottmann J, Di Michiel M, Fjellvag H, Malavasi L, Margadonna S, Vajeeston P, Vaughan G B M and Wragg D S 2017 Angew. Chem., Int. Ed. 56 11385–9 [89] Alptekin H, Au H, Jensen A C S, Olsson E, Goktas M, Headen T F, Adelhelm P, Cai Q, Drew A J and Titirici M 2020 Sodium storage mechanism investigations through structural changes in hard carbons ACS Appl. Energy Mater. 3 9918–27 [90] Goktas M, Bolli C, Berg E J, Nov ́ak P, Pollok K, Langenhorst F, Roeder M V, Lenchuk O, Mollenhauer D and Adelhelm P 2018 Adv. Energy Mater. 8 1702724 [91] Olsson E, Cottom J, Au H, Guo Z, Jensen A C S, Alptekin H, Drew A J, Titirici M-M and Cai Q 2020 Adv. Funct. Mater. 30 1908209 [92] Bommier C, Ji X L and Greaney P A 2019 Chem. Mater. 31 658–77 [93] Soto F A, Marzouk A, El-Mellouhi F and Balbuena P B 2018 Chem. Mater. 30 3315–22 [94] Deringer V L, Merlet C, Hu Y C, Lee T H, Kattirtzi J A, Pecher O, Csanyi G, Elliott S R and Grey C P 2018 Chem. Commun. 54 5988–91 [95] Xie F, Xu Z, Guo Z and Titirici M-M 2020 Prog. Energy 2 042002 [96] Stevens D and Dahn J R 2000 J. Electrochem. Soc. 147 1271–3 [97] Ding J et al 2013 ACS Nano 7 11004–15 [98] Bommier C, Surta T W, Dolgos M and Ji X 2015 Nano Lett. 15 5888–92 82

PDF Image | roadmap for sodium-ion batteries

PDF Search Title:

roadmap for sodium-ion batteries

Original File Name Searched:

sodium-ion-batteries.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)