Overview on Anodes for Magnesium Batteries

PDF Publication Title:

Overview on Anodes for Magnesium Batteries ( overview-anodes-magnesium-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

Nanomaterials 2021, 11, 810 27 of 29 138. Li,J.;Chen,H.;Shen,Y.;Hu,C.;Cheng,Z.;Lu,W.;Qiu,Y.;Chen,L.Covalentinterfacialcouplingforhybridsolid-stateLiion conductor. Energy Storage Mater. 2019, 23, 277–283. [CrossRef] 139. Wang, M.; Yagi, S. Redox behavior of VS2 nanosheets in Grignard reagent-based electrolyte. Mater. Lett. 2020, 273, 127914. [CrossRef] 140. Lee,B.;Cho,J.H.;Seo,H.R.;Na,S.B.;Kim,J.H.;Cho,B.W.;Yim,T.;Oh,S.H.StrategiccombinationofGrignardreagentsand allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable mag-nesium batteries. J. Mater. Chem. A 2018, 6, 3126–3133. [CrossRef] 141. Pedico,A.;Lamberti,A.;Gigot,A.;Fontana,M.;Bella,F.;Rivolo,P.;Cocuzza,M.;Pirri,C.F.High-PerformingandStableWearable Supercapacitor Exploiting rGO Aerogel Decorated with Copper and Molybdenum Sulfides on Carbon Fibers. ACS Appl. Energy Mater. 2018, 1, 4440–4447. [CrossRef] 142. Nair,J.R.;Colò,F.;Kazzazi,A.;Moreno,M.;Bresser,D.;Lin,R.;Bella,F.;Meligrana,G.;Fantini,S.;Simonetti,E.;etal.Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J. Power Sources 2019, 412, 398–407. [CrossRef] 143. Radzir,N.N.M.;AbuHanifah,S.;Ahmad,A.;Hassan,N.H.;Bella,F.Effectoflithiumbis(trifluoromethylsulfonyl)imidesalt-doped UV-cured glycidyl methacrylate. J. Solid State Electrochem. 2015, 19, 3079–3085. [CrossRef] 144. Suriyakumar, S.; Gopi, S.; Kathiresan, M.; Bose, S.; Gowd, E.B.; Nair, J.R.; Angulakshmi, N.; Meligrana, G.; Bella, F.; Gerbaldi, C.; et al. Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim. Acta 2018, 285, 355–364. [CrossRef] 145. Scalia,A.;Bella,F.;Lamberti,A.;Gerbaldi,C.;Tresso,E.Innovativemultipolymerelectrolytemem-branedesignedbyoxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 2019, 166, 789–795. [CrossRef] 146. Matsui,M.StudyonelectrochemicallydepositedMgmetal.J.PowerSources2011,196,7048–7055.[CrossRef] 147. Champagne, P.-L.; Ester, D.F.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V.K.; Williams, V.E.; et al. Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin. J. Mater. Chem. A 2019, 7, 12201–12213. [CrossRef] 148. Luo, G.; Yuan, B.; Guan, T.; Cheng, F.; Zhang, W.; Chen, J. Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Appl. Energy Mater. 2019, 2, 3028–3034. [CrossRef] 149. Long, M.-C.; Xia, L.-T.; Lyu, T.-B.; Wang, T.; Huang, T.; Chen, L.; Wu, G.; Wang, X.-L.; Wang, Y.-Z. A green and facile way to prepare methylcellulose-based porous polymer electrolytes with high lithium-ion conductivity. Polymer 2019, 176, 256–263. [CrossRef] 150. Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550. [CrossRef] 151. Zhang,M.;Yu,S.;Mai,Y.;Zhang,S.;Zhou,Y.Asingle-ionconductinghyperbranchedpolymerasahighperformancesolid-state electrolyte for lithium ion batteries. Chem. Commun. 2019, 55, 6715–6718. [CrossRef] 152. Attias,R.;Salama,M.;Hirsch,B.;Gofer,Y.;Aurbach,D.SolventEffectsontheReversibleIntercalationofMagnesium-Ionsinto V2 O5 Electrodes. ChemElectroChem 2018, 5, 3514–3524. [CrossRef] 153. Kamphaus,E.P.;Balbuena,P.B.EffectsofDimethylDisulfideCosolventonLi–SBatteryChemistryandPerformance.Chem.Mater. 2019, 31, 2377–2389. [CrossRef] 154. Betz,J.;Brinkmann,J.P.;Nölle,R.;Lürenbaum,C.;Kolek,M.;Stan,M.C.;Winter,M.;Placke,T.Crosstalkbetweentransition metal cathode and Li metal anode: Unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 2019, 9, 1900574. [CrossRef] 155. Lopez,J.;Mackanic,D.G.;Cui,Y.;Bao,Z.Designingpolymersforadvancedbatterychemistries.Nat.Rev.Mater.2019,4,312–330. [CrossRef] 156. Gunday,S.T.;Kamal,A.Z.;Almessiere,M.A.;Çelik,S.Ü.;Bozkurt,A.Aninvestigationoflithiumionconductivityofcopolymers based on P(AMPS-co-PEGMA). J. Appl. Polym. Sci. 2019, 136, 47798. [CrossRef] 157. Ganesan, V. Ion transport in polymeric ionic liquids: Recent developments and open questions. Mol. Syst. Des. Eng. 2019, 4, 280–293. [CrossRef] 158. Arthur, T.S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103–106. [CrossRef] 159. Di Leo, R.A.; Zhang, Q.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Composite anodes for sec-ondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem. Lett. 2015, 4, A10–A14. [CrossRef] 160. Barnes,A.C.;Guo,C.;Howells,W.S.Fast-ionconductionandthestructureofbeta-Mg3Bi2.J.Physics:Condens.Matter1994,6, L467–L471. [CrossRef] 161. Shao, Y.; Gu, M.; Li, X.; Nie, Z.; Zuo, P.; Li, G.; Liu, T.; Xiao, J.; Cheng, Y.; Wang, C.; et al. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Lett. 2014, 14, 255–260. [CrossRef] 162. Murgia,F.;Stievano,L.;Monconduit,L.;Berthelot,R.InsightintotheelectrochemicalbehaviorofmicrometricBiandMg3Bi2as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478–16485. [CrossRef]

PDF Image | Overview on Anodes for Magnesium Batteries

PDF Search Title:

Overview on Anodes for Magnesium Batteries

Original File Name Searched:

nanomaterials-11-00810.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)