logo

Overview on Anodes for Magnesium Batteries

PDF Publication Title:

Overview on Anodes for Magnesium Batteries ( overview-anodes-magnesium-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 025

Nanomaterials 2021, 11, 810 25 of 29 81. Kosai, S.; Takata, U.; Yamasue, E. Natural resource use of a traction lithium-ion battery production based on land disturbances through mining activities. J. Clean. Prod. 2021, 280, 124871. [CrossRef] 82. Zhang, Y.; Lu, W.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C.M.; Xie, H.; Liu, J. Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources 2019, 420, 63–72. [CrossRef] 83. Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Accounts Chem. Res. 2019, 52, 686–694. [CrossRef] 84. Patel, S.; Kumar, R. Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. J. Alloys Compd. 2019, 789, 6–14. [CrossRef] 85. Zhu, Y.; Cao, J.; Chen, H.; Yu, Q.; Li, B. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839. [CrossRef] 86. Edison Investment Research Limited. Available online: https://www.youtube.com/watch?v=rQ6U5DtxEOw (accessed on 1 February 2021). 87. Xu, J.; Dou, S.; Cui, X.; Liu, W.; Zhang, Z.; Deng, Y.; Hu, W.; Chen, Y. Potassium-based electro-chemical energy storage devices: Development status and future prospect. Energy Storage Mater. 2021, 34, 85–106. [CrossRef] 88. Zhou, M.; Bai, P.; Ji, X.; Yang, J.; Wang, C.; Xu, Y. Electrolytes and Interphases in Potassium Ion Batteries. Adv. Mater. 2021, 33, e2003741. [CrossRef] 89. Jin, T.; Han, Q.; Jiao, L. Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 1806304. [CrossRef] 90. Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. Adv. Mater. 2019, 31, e1808393. [CrossRef] 91. Sångeland, C.; Younesi, R.; Mindemark, J.; Brandell, D. Towards room temperature operation of all-solid-state Na-ion batteries through polyester–polycarbonate-based polymer electrolytes. Energy Storage Mater. 2019, 19, 31–38. [CrossRef] 92. Guo, Q.; Zeng, W.; Liu, S.-L.; Li, Y.-Q.; Xu, J.-Y.; Wang, J.-X.; Wang, Y. Recent developments on anode materials for magnesium-ion batteries: A review. Rare Met. 2021, 40, 290–308. [CrossRef] 93. Pei, C.; Xiong, F.; Yin, Y.; Liu, Z.; Tang, H.; Sun, R.; An, Q.; Mai, L. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small 2021, 17, e2004108. [CrossRef] 94. Liu, F.; Wang, T.; Liu, X.; Fan, L. Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries. Adv. Energy Mater. 2021, 11, 2000787. [CrossRef] 95. You, C.; Wu, X.; Yuan, X.; Chen, Y.; Liu, L.; Zhu, Y.; Fu, L.; Wu, Y.; Guo, Y.-G.; Van Ree, T. Advances in rechargeable Mg batteries. J. Mater. Chem. A 2020, 8, 25601–25625. [CrossRef] 96. Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloy. 2020, 8, 963–979. [CrossRef] 97. Shi, J.; Zhang, J.; Guo, J.; Lu, J. Interfaces in rechargeable magnesium batteries. Nanoscale Horizons 2020, 5, 1467–1475. [CrossRef] 98. Shuai, H.; Xu, J.; Huang, K. Progress in retrospect of electrolytes for secondary magnesium batteries. Co-ord. Chem. Rev. 2020, 422, 213478. [CrossRef] 99. Rubio, S.; Medina, A.; Cabello, M.; LaVela, P.; Alcántara, R.; Vicente, C.P.; Ortiz, G.F.; Tirado, J.L. Inorganic solids for dual magnesium and sodium battery electrodes. J. Solid State Electrochem. 2020, 24, 1–9. [CrossRef] 100. Tan,S.;Xiong,F.;Wang,J.;An,Q.;Mai,L.Crystalregulationtowardsrechargeablemagnesiumbatterycathodematerials.Mater. Horizons 2020, 7, 1971–1995. [CrossRef] 101. Niu,J.;Zhang,Z.;Aurbach,D.AlloyAnodeMaterialsforRechargeableMgIonBatteries.Adv.EnergyMater.2020,10,2000697. [CrossRef] 102. Yoo,H.D.;Shterenberg,I.;Gofer,Y.;Gershinsky,G.;Pour,N.;Aurbach,D.Mgrechargeablebatteries:Anon-goingchallenge. Energy Environ. Sci. 2013, 6, 2265–2279. [CrossRef] 103. Aurbach,D.;Weissman,I.;Gofer,Y.;Levi,E.Nonaqueousmagnesiumelectrochemistryanditsappli-cationinsecondarybatteries. Chem. Rec. 2003, 3, 61–73. [CrossRef] 104. Castelletti,M.VersolaFinedell’Economia:ApiceeCollassodelConsumismo;FuocoEdizioni:Rome,Italy,2013. 105. Guo,Z.;Zhao,S.;Li,T.;Su,D.;Guo,S.;Wang,G.RecentAdvancesinRechargeableMagnesium-BasedBatteriesforHigh-Efficiency Energy Storage. Adv. Energy Mater. 2020, 10, 1903591. [CrossRef] 106. Anderson,D.L.Chemicalcompositionofthemantle.J.Geophys.Res.SpacePhys.1983,88,B41–B52.[CrossRef] 107. Witte,F.Thehistoryofbiodegradablemagnesiumimplants:Areview.ActaBiomater.2010,6,1680–1692.[CrossRef] 108. Ehrenberger, S.; Friedrich, H.E. Life-cycle assessment of the recycling of magnesium vehicle compo-nents. JOM 2013, 65, 1303–1309. [CrossRef] 109. UNEP.RecyclingRatesofMetals.2011.Availableonline:www.unep.org(accessedon1February2021). 110. Attias,R.;Salama,M.;Hirsch,B.;Goffer,Y.;Aurbach,D.Anode-ElectrolyteInterfacesinSecondaryMagnesiumBatteries.Joule 2019, 3, 27–52. [CrossRef] 111. Shimokawa, K.; Ichitsubo, T. Spinel–rocksalt transition as a key cathode reaction toward high-energy-density magnesium rechargeable batteries. Curr. Opin. Electrochem. 2020, 21, 93–99. [CrossRef] 112. Park,B.;Schaefer,J.L.Review-polymerelectrolytesformagnesiumbatteries:Forgingawayfromana-logsoflithiumpolymer electrolytes and towards the rechargeable magnesium metal polymer battery. J. Electrochem. Soc. 2020, 167, 070545. [CrossRef]

PDF Image | Overview on Anodes for Magnesium Batteries

overview-anodes-magnesium-batteries-025

PDF Search Title:

Overview on Anodes for Magnesium Batteries

Original File Name Searched:

nanomaterials-11-00810.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP