Flexible Zn-Based Batteries with Polymer Electrolyte

PDF Publication Title:

Flexible Zn-Based Batteries with Polymer Electrolyte ( flexible-zn-based-batteries-with-polymer-electrolyte )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

Batteries 2022, 8, 59 16 of 17 42. Han, Q.; Chi, X.; Zhang, S.; Liu, Y.; Zhou, B.; Yang, J.; Liu, Y. Durable, Flexible Self-Standing Hydrogel Electrolytes Enabling High-Safety Rechargeable Solid-State Zinc Metal Batteries. J. Mater. Chem. A 2018, 6, 23046–23054. [CrossRef] 43. Gaikwad, A.M.; Arias, A.C.; Steingart, D.A. Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects. Energy Technol. 2015, 3, 305–328. [CrossRef] 44. Sun, C.-F.; Zhu, H.; Baker III, E.B.; Okada, M.; Wan, J.; Ghemes, A.; Inoue, Y.; Hu, L.; Wang, Y. Weavable High-Capacity Electrodes. Nano Energy 2013, 2, 987–994. [CrossRef] 45. Zhang, Y.; Zhao, Y.; Ren, J.; Weng, W.; Peng, H. Advances in Wearable Fiber-Shaped Lithium-Ion Batteries. Adv. Mater. 2016, 28, 4524–4531. [CrossRef] 46. Pei, Z.; Ding, L.; Wang, C.; Meng, Q.; Yuan, Z.; Zhou, Z.; Zhao, S.; Chen, Y. Make It Stereoscopic: Interfacial Design for Full-Temperature Adaptive Flexible Zinc–Air Batteries. Energy Environ. Sci. 2021, 14, 4926–4935. [CrossRef] 47. Wang, H.; Liu, J.; Wang, J.; Hu, M.; Feng, Y.; Wang, P.; Wang, Y.; Nie, N.; Zhang, J.; Chen, H. Concentrated Hydrogel Electrolyte- Enabled Aqueous Rechargeable Nico//Zn Battery Working from −20 to 50 ◦C. ACS Appl. Mat. Interfaces 2018, 11, 49–55. [CrossRef] 48. Chen, M.; Zhou, W.; Wang, A.; Huang, A.; Chen, J.; Xu, J.; Wong, C.-P. Anti-Freezing Flexible Aqueous Zn–Mno 2 Batteries Working at −35 ◦C Enabled by a Borax-Crosslinked Polyvinyl Alcohol/Glycerol Gel Electrolyte. J. Mater. Chem. A 2020, 8, 6828–6841. [CrossRef] 49. Pei, Z.; Yuan, Z.; Wang, C.; Zhao, S.; Fei, J.; Wei, L.; Chen, J.; Wang, C.; Qi, R.; Liu, Z. A Flexible Rechargeable Zinc–Air Battery with Excellent Low-Temperature Adaptability. Angew. Chem. Int. Ed. 2020, 59, 4793–4799. [CrossRef] 50. Yang, H.; Liu, Z.; Chandran, B.K.; Deng, J.; Yu, J.; Qi, D.; Li, W.; Tang, Y.; Zhang, C.; Chen, X. Self-Protection of Electrochemical Storage Devices Via a Thermal Reversible Sol–Gel Transition. Adv. Mater. 2015, 27, 5593–5598. [CrossRef] 51. Zhu, J.; Yao, M.; Huang, S.; Tian, J.; Niu, Z. Thermal-Gated Polymer Electrolytes for Smart Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 16480–16484. [CrossRef] [PubMed] 52. Yang, P.; Feng, C.; Liu, Y.; Cheng, T.; Yang, X.; Liu, H.; Liu, K.; Fan, H.J. Thermal Self-Protection of Zinc-Ion Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes. Adv. Energy Mater. 2020, 10, 2002898. [CrossRef] 53. Huang, Y.; Liu, J.; Wang, J.; Hu, M.; Mo, F.; Liang, G.; Zhi, C. An Intrinsically Self-Healing Nico|| Zn Rechargeable Battery with a Self-Healable Ferric-Ion-Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angew. Chem. Int. Ed. 2018, 57, 9810–9813. [CrossRef] 54. Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Self-Healing of Covalently Cross-Linked Polymers by Reshuffling Thiuram Disulfide Moieties in Air under Visible Light. Adv. Mater. 2012, 24, 3975–3980. [CrossRef] [PubMed] 55. Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J.A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv. Mater. 2020, 32, 1908121. [CrossRef] [PubMed] 56. Liu, Z.; Luo, X.; Qin, L.; Fang, G.; Liang, S. Progress and Prospect of Low-Temperature Zinc Metal Batteries. Adv. Powder Mater. 2022, 1, 100011. [CrossRef] 57. Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Lett. 2015, 15, 2740–2745. [CrossRef] 58. Zhai, H.; Xu, P.; Ning, M.; Cheng, Q.; Mandal, J.; Yang, Y. A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries. Nano Lett. 2017, 17, 3182–3187. [CrossRef] 59. Chen, Z.; Li, X.; Wang, D.; Yang, Q.; Ma, L.; Huang, Z.; Liang, G.; Chen, A.; Guo, Y.; Dong, B. Grafted Mxene/Polymer Electrolyte for High Performance Solid Zinc Batteries with Enhanced Shelf Life at Low/High Temperatures. Energy Environ. Sci. 2021, 14, 3492–3501. [CrossRef] 60. Ma, L.; Chen, S.; Li, X.; Chen, A.; Dong, B.; Zhi, C. Liquid-Free All-Solid-State Zinc Batteries and Encapsulation-Free Flexible Batteries Enabled by in Situ Constructed Polymer Electrolyte. Angew. Chem. 2020, 132, 24044–24052. [CrossRef] 61. Bommier, C.; Ji, X. Electrolytes, Sei Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes. Small 2018, 14, 1703576. [CrossRef] [PubMed] 62. An, S.J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D.L. The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (Sei) and Its Relationship to Formation Cycling. Carbon 2016, 105, 52–76. [CrossRef] 63. Tripathi, A.M.; Su, W.-N.; Hwang, B.J. In Situ Analytical Techniques for Battery Interface Analysis. Chem. Soc. Rev. 2018, 47, 736–851. [CrossRef] [PubMed] 64. Ling, W.; Mo, F.; Wang, J.; Liu, Q.; Liu, Y.; Yang, Q.; Qiu, Y.; Huang, Y. Self-Healable Hydrogel Electrolyte for Dendrite-Free and Self-Healable Zinc-Based Aqueous Batteries. Mater. Today Phys. 2021, 20, 100458. [CrossRef] 65. Zhu, M.; Wang, X.; Tang, H.; Wang, J.; Hao, Q.; Liu, L.; Li, Y.; Zhang, K.; Schmidt, O.G. Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Adv. Funct. Mater. 2020, 30, 1907218. [CrossRef] 66. Yan, X.; Chen, Z.; Wang, Y.; Li, H.; Zhang, J. In-Situ Growth of Zno Nanoplates on Graphene for the Application of High Rate Flexible Quasi-Solid-State Ni-Zn Secondary Battery. J. Power Source 2018, 407, 137–146. [CrossRef] 67. Zhao, Y.; Ma, L.; Zhu, Y.; Qin, P.; Li, H.; Mo, F.; Wang, D.; Liang, G.; Yang, Q.; Liu, W. Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate) for High-Performance Zinc-Ion Batteries. ACS Nano 2019, 13, 7270–7280. [CrossRef] [PubMed]

PDF Image | Flexible Zn-Based Batteries with Polymer Electrolyte

PDF Search Title:

Flexible Zn-Based Batteries with Polymer Electrolyte

Original File Name Searched:

batteries-08-00059.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)