PDF Publication Title:
Text from PDF Page: 007
Crystals 2022, 12, 1339 7 of 7 8. Kobr, L.; Zhao, K.; Shen, Y.; Shoemaker, R.K.; Rogers, C.T.; Michl, J. Inclusion Compound Based Approach to Forming Arrays of Artificial Dipolar Molecular Rotors: A Search for Optimal Rotor Structures. Adv. Mater. 2013, 25, 443–448. [CrossRef] 9. Armstrong, A.F.; Valliant, J.F. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton Trans. 2007, 38, 4240–4251. [CrossRef] 10. Cho, Y.-J.; Kim, S.-Y.; Cho, M.; Han, W.-S.; Son, H.-J.; Cho, D.W.; Kang, S.O. Aggregation-induced emission of diarylamino-π- carborane triads: Effects of charge transfer and π-conjugation. Phys. Chem. Chem. Phys. 2016, 18, 9702–9708. [CrossRef] 11. Carter, T.J.; Mohtadi, R.; Arthur, T.S.; Mizuno, F.; Zhang, R.; Shirai, S.; Kampf, J.W. Boron Clusters as Highly Stable Magnesium- Battery Electrolytes. Angew. Chem. Int. Ed. 2014, 53, 3173–3177. [CrossRef] 12. Murgia, F.; Brighi, M.; Piveteau, L.; Avalos, C.E.; Gulino, V.; Nierstenhofer, M.C.; Ngene, P.; de Jongh, P.; Cerny, R. Enhanced Room-Temperature Ionic Conductivity of NaCB11H12 via High-Energy Mechanical Milling. ACS Appl. Mater. Interfaces 2021, 13, 61346–61356. [CrossRef] [PubMed] 13. Dimitrievska, M.; Wu, H.; Stavila, V.; Babanova, O.A.; Skoryunov, R.V.; Soloninin, A.V.; Zhou, W.; Trump, B.A.; Andersson, M.S.; Skripov, A.V.; et al. Structural and Dynamical Properties of Potassium Dodecahydro-monocarba-closo-dodecaborate: KCB11H12. J. Phys. Chem. C 2020, 124, 17992–18002. [CrossRef] 14. Guo, W.; Guo, C.; Ma, Y.N.; Chen, X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroiso- propanol. Inorg. Chem. 2022, 61, 5326–5334. [CrossRef] [PubMed] 15. Ma, Y.N.; Gao, Y.; Ma, Y.; Wang, Y.; Ren, H.; Chen, X. Palladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources. J. Am. Chem. Soc. 2022, 144, 8371–8378. [CrossRef] [PubMed] 16. Wang, Y.; Gao, Y.; Guo, W.; Zhao, Q.; Ma, Y.N.; Chen, X. Highly selective electrophilic B(9)-amination of o-carborane driven by HOTf and HFIP. Org. Chem. Front. 2022, 9, 4975–4980. [CrossRef] 17. Körbe, S.; Schreiber, P.J.; Michl, J. Chemistry of the Carba-closo-dodecaborate(−) Anion, CB11H12−. Chem. Rev. 2006, 106, 5208–5249. [CrossRef] 18. Douvris, C.; Michl, J. Update 1 of: Chemistry of the Carba-closo-dodecaborate(−) Anion, CB11H12−. Chem. Rev. 2013, 113, PR179–PR233. [CrossRef] 19. Fisher, S.P.; Tomich, A.W.; Lovera, S.O.; Kleinsasser, J.F.; Guo, J.; Asay, M.J.; Nelson, H.M.; Lavallo, V. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem. Rev. 2019, 119, 8262–8290. [CrossRef] 20. Plešek, J.; Jelínek, T.; Drdáková, E.; Herˇmánek, S.; Štíbr, B. A Convenient Preparation of 1-CB11H12− and its C-Amion Derivatives. Collect. Czech. Chem. C 1984, 49, 1561–1562. [CrossRef] 21. Franken, A.; Bullen, N.J.; Jelínek, T.; Thornton-Pett, M.; Teat, S.J.; Clegg, W.; Kennedy, J.D.; Hardie, M.J. Structural chemistry of halogenated monocarbaboranes: The extended structures of Cs[1-HCB9H4Br5], Cs[1-HCB11H5Cl6] and Cs[1-HCB11H5Br6]. New J. Chem. 2004, 28, 1499–1505. [CrossRef] 22. Franken, A.; King, B.T.; Rudolph, J.; Rao, P.; Noll, B.C.; Michl, J. Preparation of [closo-CB11H12]− by Dichlorocarbene Insertion Into [nido-B11H14]−. Collect. Czech. Chem. C 2001, 66, 1238–1249. [CrossRef] 23. Pecyna, J.; Roncevic, I.; Michl, J. Insertion of Carbenes into Deprotonated nido-Undecaborane, B11 H13 2 − . Molecules 2019, 24, 3779. [CrossRef] 24. Toom, L.; Kutt, A.; Leito, I. Simple and scalable synthesis of the carborane anion CB11H12−. Dalton Trans. 2019, 48, 7499–7502. [CrossRef] 25. Berger, A.; Buckley, C.E.; Paskevicius, M. Synthesis of closo-CB11H12− Salts Using Common Laboratory Reagents. Inorg Chem. 2021, 60, 14744–14751. [CrossRef] [PubMed] 26. Li, S.; Zhang, Y.; Ma, Y.; Qiu, P.; Chen, X. Improved and Scalable Synthesis of [Et4N][closo-1-CHB9H9]. Organomet 2021, 40, 3480–3485. [CrossRef] 27. Zhao, Q.; Dewhurst, R.D.; Braunschweig, H.; Chen, X. A New Perspective on Borane Chemistry: The Nucleophilicity of the B−H Bonding Pair Electrons. Angew. Chem. Int. Ed. 2019, 58, 3268–3278. [CrossRef] 28. Li, H.; Ma, N.; Meng, W.; Gallucci, J.; Qiu, Y.; Li, S.; Zhao, Q.; Zhang, J.; Zhao, J.-C.; Chen, X. Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. J. Am. Chem. Soc. 2015, 137, 12406–12414. [CrossRef] 29. Chen, X.-M.; Ma, N.; Zhang, Q.-F.; Wang, J.; Feng, X.; Wei, C.; Wang, L.-S.; Zhang, J.; Chen, X. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B3H8−) through the Nucleophilicity of the B−H Bond. J. Am. Chem. Soc. 2018, 140, 6718–6726. [CrossRef] 30. Chen, X.; Zhao, J.-C.; Shore, S.G. The Roles of Dihydrogen Bonds in Amine Borane Chemistry. Acc. Chem. Res. 2013, 46, 2666–2675. [CrossRef] 31. Chen, X.; Bao, X.; Zhao, J.-C.; Shore, S.G. Experimental and Computational Study of the Formation Mechanism of the Diammoniate of Diborane: The Role of Dihydrogen Bonds. J. Am. Chem. Soc. 2011, 133, 14172–14175. [CrossRef] 32. Chen, X.; Zhao, J.-C.; Shore, S.G. Facile Synthesis of Aminodiborane and Inorganic Butane Analogue NH3 BH2 NH2 BH3 . J. Am. Chem. Soc. 2010, 132, 10658–10659. [CrossRef] [PubMed] 33. Guo, Y.; Wang, R.-Y.; Kang, J.-X.; Ma, Y.-N.; Xu, C.-Q.; Li, J.; Chen, X. Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nat. Commun. 2021, 12, 5964. [PubMed]PDF Image | Efficient Way to Directly Synthesize Unsolvated Alkali Metal
PDF Search Title:
Efficient Way to Directly Synthesize Unsolvated Alkali MetalOriginal File Name Searched:
crystals-12-01339.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing. CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |