logo

Sieves for Highly Selective Li Adsorption

PDF Publication Title:

Sieves for Highly Selective Li Adsorption ( sieves-highly-selective-li-adsorption )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Processes 2018, 6, 59 13 of 14 Conflicts of Interest: The authors declare no conflict of interest. References 1. Yang, S.; Huimin, R.; Shen, J.; Gao, C. Preparation methods and analyses of structural performance of spinel-type lithium manganese oxide ion sieves. Chem. Ind. Eng. Prog. 2015, 6, 1690–1699. 2. Özgür, C. Preparation and characterization of LiMn2O4 ion-sieve with high Li+ adsorption rate by ultrasonic spray pyrolysis. Solid State Ion. 2010, 181, 1425–1428. [CrossRef] 3. Xiao, J.L.; Sun, S.Y.; Song, X.; Li, P.; Yu, J.G. Lithium ion recovery from brine using granulated polyacry λ–MnO2 ion-sieve. Chem. Eng. J. 2015, 279, 659–666. [CrossRef] 4. Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [CrossRef] 5. Feng, G.; Ping, Z.M.; Zhen, N.; Hua, L.J.; Sheng, S.P. Brine Lithium Resource in the Salt Lake and Advances in Its Exploitation. Acta Geosci. Sin. 2011, 32, 483–492. 6. Xiao, J.L.; Sun, S.Y.; Wang, J.; Li, P.; Yu, J.G. Synthesis and Adsorption Properties of Li1.6Mn1.6O4 Spinel. Ind. Eng. Chem. Res. 2013, 52, 11967–11973. [CrossRef] 7. Zandevakili, S.; Ranjbar, M.; Ehteshamzadeh, M. Improvement of lithium adsorption capacity by optimising the parameters affecting synthesised ion sieves. Micro Nano Lett. 2015, 10, 58–63. [CrossRef] 8. Li, L.; Qu, W.; Liu, F.; Zhao, T.; Zhang, X.; Chen, R.; Wu, F. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries. Appl. Surf. Sci. 2014, 315, 59–65. [CrossRef] 9. Xiao, G.; Tong, K.; Zhou, L.; Xiao, J.; Sun, S.; Li, P.; Yu, J. Adsorption and Desorption Behavior of Lithium Ion in Spherical PVC–MnO2 Ion Sieve. Ind. Eng. Chem. Res. 2012, 51, 10921–10929. [CrossRef] 10. Zhu, G.; Wang, P.; Qi, P.; Gao, C. Adsorption and desorption properties of Li+ on PVC-H1.6 Mn1.6O4 lithium ion-sieve membrane. Chem. Eng. J. 2014, 235, 340–348. [CrossRef] 11. Wang, C.; Zhai, Y.; Wang, X.; Zeng, M. Preparation and characterization of lithium λ-MnO2 ion-sieves. Front. Chem. Sci. Eng. 2014, 8, 471–477. [CrossRef] 12. Xiao, J.; Nie, X.; Sun, S.; Song, X.; Ping, L.; Yu, J. Lithium ion adsorption–desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model. Adv. Powder Technol. 2015, 26, 589–594. [CrossRef] 13. Singh, I.B.; Singh, A. A facile low-temperature synthesis of Li4Mn5O12 nanorods. Colloid Polym. Sci. 2017, 295, 689–693. [CrossRef] 14. Liu, L.; Zhang, H.; Zhang, Y.; Cao, D.; Zhao, X. Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O. Colloids Surf. A. 2015, 468, 280–284. [CrossRef] 15. Park, M.J.; Nisola, G.M.; Beltran, A.B.; Torrejos, R.E.C.; Seo, J.G.; Lee, S.; Kim, H.; Chung, W. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate. Chem. Eng. J. 2014, 254, 73–81. [CrossRef] 16. Sorour, M.H.; El-Rafei, A.M.; Hani, H.A. Synthesis and characterization of electrospun aluminum doped Li1.6Mn1.6O4 spinel. Ceram. Int. 2016, 42, 4911–4917. [CrossRef] 17. Sun, D.; Meng, M.; Yin, Y.; Zhu, Y.; Li, H.; Yan, Y. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+. J. Porous Mater. 2016, 23, 1–9. [CrossRef] 18. Yu, Q.; Sasaki, K. In situ X-ray diffraction investigation of the evolution of a nanocrystalline lithium-ion sieve from biogenic manganese oxide. Hydrometall 2014, 150, 253–258. [CrossRef] 19. Yuan, J.S.; Yin, H.B.; Ji, Z.Y.; Deng, H.N. Effective Recycling Performance of Li+ Extraction from Spinel-Type LiMn2O4 with Persulfate. Ind. Eng. Chem. Res. 2014, 53, 9889–9896. [CrossRef] 20. Park, H.K.; Rah, H.; Dong, J.K.; Chun, U.; Kim, S.G. Confined growth of lithium manganese oxide nanoparticles. J. Sol-Gel Sci. Technol. 2013, 67, 464–472. [CrossRef] 21. Tang, W.; Tian, S.; Liu, L.L.; Li, L.; Zhang, H.P.; Yue, Y.B.; Bai, Y.; Wu, Y.P.; Zhu, K. Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries. Electrochem. Commun. 2011, 13, 205–208. [CrossRef] 22. Xiao, G.P. Granulation to LiMn2O4 Ion-Sieve and Its Lithium Adsorption Property. Chin. J. Inorg. Chem. 2010, 26, 435–439. 23. Zhang, Q.H.; Li, S.P.; Sun, S.Y.; Yin, X.S.; Yu, J.G. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption. Chem. Eng. Sci. 2010, 65, 169–173. [CrossRef]

PDF Image | Sieves for Highly Selective Li Adsorption

sieves-highly-selective-li-adsorption-013

PDF Search Title:

Sieves for Highly Selective Li Adsorption

Original File Name Searched:

processes-06-00059-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP