PDF Publication Title:
Text from PDF Page: 066
Energies 2021, 14, 6805 66 of 72 127. Hu,C.Q.;He,Y.F.;Liu,D.F.;Sun,S.Y.;Li,D.Q.;Zhu,Q.S.;Yu,J.G.Advancesinmineralprocessingtechnologiesrelatedtoiron, magnesium, and lithium. Rev. Chem. Eng. 2020, 36, 107–146. [CrossRef] 128. Mceachern,P.M.;Wong,N.;Andric,M.Methodandapparatusforthetreatmentofwaterwiththerecoveryofmetals.U.S.Patent Application 2020/0299805 A1, 24 September 2020. 129. Harrison,S.TechnologiesforExtractingValuableMetalsandCompoundsfromGeothermalFluids;DE-EE0002790;DepartmentofEnergy, Geothermal Technologies Program: Washington, DC, USA, 2014. 130. Harrison, S.; Bruton, C.; Jenkins, D.; Dougherty, B.; Houston, J.; Viani, B.; Martin, S.; Mohanta, S.; Sharma, K.; Amine, K. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids; CEC-500-2015-023; California Energy Commission: Sacramento, CA, USA, 2014. 131. Burba, J.L.; Stewart, R.F.; Viani, B.E.; Harrison, S.; Vogdes, C.E.; Lahlouh, J.G.S. Sorbent for Lithium Extraction. U.S. Patent 8,753,594 B1, 17 June 2014. 132. Burba,J.L.;Stewart,R.F.;Viani,B.E.;Harrison,S.;Vogdes,C.E.;Lahlouh,J.G.S.ImprovedSorbentforLithiumExtraction.WO 2015/171109 A1, 12 November 2015. 133. Featherstone,J.L.;Hanson,P.J.;Garska,M.J.;Marston,C.R.SystemandProcessforRecoveryofLithiumfromaGeothermalBrine. U.S. Patent 10,604,414 B2, 31 March 2020. 134. Featherstone,J.L.;Hanson,P.J.;Garska,M.J.;Marston,C.R.SystemforRecoveryofLithiumfromaGeothermalBrine.U.S.Patent Application 2020/0189924 A1, 18 June 2020. 135. Featherstone,J.L.;Hanson,P.J.;Garska,M.J.;Marston,C.R.ProcessforRecoveryofLithiumfromaGeothermalBrine.U.S.Patent Application 2020/0189925 A1, 18 June 2020. 136. Lecocq,V.;Burdet,F.A.P.;Oudart,Y.F.;Maillet,G.P.A.MethodforProducinganAdsorbentMaterialandMethodforExtracting Lithium from Saline Solutions Using the Material. U.S. Patent Application 2019/0314784 A1, 17 October 2019. 137. Warren,I.Techno-EconomicAnalysisofLithiumExtractionfromGeothermalBrines.Golden,CO:NationalRenewableEnergy Laboratory. NREL/TP-5700-79178. 2021. Available online: https://www.nrel.gov/docs/fy21osti/799178.pdf (accessed on 27 July 2021). 138. Terralithium.Terralithium(Homepage).2021.Availableonline:https://www.terralithium.com/(accessedon4August2021). 139. Feng,Q.;Kanoh,H.;Ooi,K.Manganeseoxideporouscrystals.J.Mater.Chem.1999,9,319–333.[CrossRef] 140. Tian,L.;Ma,W.;Han,M.AdsorptionbehaviorofLi+ontonano-lithiumionsievefromhybridmagnesium/lithiummanganese oxide. Chem. Eng. J. 2010, 156, 134–140. [CrossRef] 141. Levy,C.;Marlin,S.;Boussant-Roux,Y.MethodfortheProductionofanLMOProduct.U.S.Patent9,695,060B2,4July2017. 142. Recepoglu,Y.K.;Kabay,N.;Yilmaz-Ipek,I.;Arda,M.;Yoshizuka,K.;Nishihama,S.;Yukel,M.EquilibriumandKineticStudieson Lithium Adsorption from Geothermal Water by lambda-MnO2. Solvent Extr. Ion Exch. 2017, 35, 221–231. [CrossRef] 143. Renew,J.;Hansen,T.GeothermalThermoelectricGeneration(G-TEG)withIntegratedTemperatureDrivenMembraneDistillationand Novel Manganese Oxide for Lithium Extraction; (DE-EE0006746); Southern Research Institute: Birmingham, AL, USA, 2017. 144. Chitrakar,R.;Sakane,K.;Umeno,A.;Kasaishi,S.;Takagi,N.;Ooi,K.SynthesisoforthorhombicLiMnO2bysolid-phasereaction under steam atmosphere and a study of its heat and acid-treated phases. J. Solid State Chem. 2002, 169, 66–74. [CrossRef] 145. Özgür,C.PreparationandcharacterizationofLiMn2O4ion-sievewithhighLi+adsorptionratebyultrasonicspraypyrolysis. Solid State Ion. 2010, 181, 1425–1428. [CrossRef] 146. Zhang,Q.-H.;Li,S.-P.;Sun,S.-Y.;Yin,X.-S.;Yu,J.-G.LiMn2O4spineldirectsynthesisandlithiumionselectiveadsorption.Chem. Eng. Sci. 2010, 65, 169–173. [CrossRef] 147. Chitrakar,R.;Kanoh,H.;Makita,Y.;Miyai,Y.;Ooi,K.Synthesisofspinel-typelithiumantimonymanganeseoxidesandtheirLi+ extraction/ion insertion reactions. J. Mater. Chem. 2000, 10, 2325–2329. [CrossRef] 148. Chitrakar,R.;Makita,Y.;Ooi,K.;Sonoda,A.Synthesisofiron-dopedmanganeseoxideswithanion-sieveproperty:Lithium adsorption from Bolivian brine. Ind. Eng. Chem. Res. 2014, 53, 3682–3688. [CrossRef] 149. Chung,K.S.;Lee,J.C.;Kim,E.J.;Lee,K.C.;Kim,Y.S.;Ooi,K.Recoveryoflithiumfromseawaterusingnano-manganeseoxide adsorbents prepared by gel process. Mater. Sci. Forum 2004, 449–452, 277–280. [CrossRef] 150. Shiu,J.-Y.;Lin,J.-R.;Lee,D.-C.;Chen,Y.-M.;Liu,C.-C.MethodforAdsorbingLithiumIonsfromaLithium-ContainingAqueous Solution by a Granular Adsorbent. U.S. Patent Application 2003/0231996 A1, 18 December 2003. 151. Wang, H.S.; Cui, J.J.; Li, M.L.; Guo, Y.F.; Deng, T.L.; Yu, X.P. Selective recovery of lithium from geothermal water by EGDE cross-linked spherical CTS/LMO. Chem. Eng. J. 2020, 389, 124410. [CrossRef] 152. Shi,K.Y.;Luo,M.W.;Ying,J.;Zhen,S.Y.;Xing,Z.Y.;Chen,R.ExtractionofLithiumfromSingle-CrystallineLithiumManganese Oxide Nanotubes Using Ammonium Peroxodisulfate. iScience 2020, 23, 101768. [CrossRef] 153. Lilac Solutions Inc. New Extraction Methods. Available online: https://lilacsolutions.com/technology/ (accessed on 15 October 2021). 154. Chitrakar,R.;Makita,Y.;Ooi,K.;Sonoda,A.LithiumrecoveryfromsaltlakebrinebyH2TiO3.DaltonTrans.2014,43,8933–8939. [CrossRef] 155. MGXMineralsInc.MGXMineralsandEurekaResourcesAnnounceJointVenturetoRecoverLithiumfromProducedWaterinEastern United States; PRNewswire: Vancouver, BC, Canada, 2019. 156. E3 Metals Corporation. Projects: Alberta Lithium. 2020. Available online: https://www.e3metalscorp.com/ (accessed on 15 September 2020).PDF Image | Recovery of Lithium from Geothermal Brines
PDF Search Title:
Recovery of Lithium from Geothermal BrinesOriginal File Name Searched:
energies-14-06805-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)