
PDF Publication Title:
Text from PDF Page: 065
Energies 2021, 14, 6805 65 of 72 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. Chaban, M.A.; Rozhdestvenskaya, L.M.; Palchik, A.V.; Belyakov, V.N. Selectivity of new inorganic ion-exchangers based on oxides of titanum and manganese at sorpion of lithium from aqueous media. J. Water Chem. Technol. 2016, 38, 8–13. [CrossRef] Wang,S.;Li,P.;Zhang,X.;Zheng,S.;Zhang,Y.SelectiveadsorptionoflithiumfromhighMg-containingbrinesusingHxTiO3ion sieve. Hydrometallurgy 2017, 174, 21–28. [CrossRef] Chaban, M.O.; Rozhdestvenska, L.M.; Palchyk, O.V.; Dzyazko, Y.S.; Dzyazko, O.G. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Appl. Nanosci. 2019, 9, 1037–1045. [CrossRef] Chao,J.GeothermalBrinesCouldPropelCalifornia’sGreenEconomy;LawrenceBerkeleyNationalLaboratory:Berkeley,CA,USA, 2020. Available online: https://newscenter.lbl.gov/2020/08/05/geothermal-brines-could-propel-californias-green-economy/ (accessed on 5 August 2020). Feng,Q.;Miyai,Y.;Kanoh,H.;Ooi,K.Lithium(1+)extraction/insertionwithspinel-typelithiummanganeseoxides.Characteri- zation of redox-type and ion-exchange-type sites. Langmuir 1992, 8, 1861–1867. [CrossRef] Feng,Q.;Miyai,Y.;Kanoh,H.;Ooi,K.Li+andMg2+extractionandLi+insertionreactionswithLiMg0.5Mn1.5O4spinelinthe aqueous phase. Chem. Mater. 1993, 5, 311–316. [CrossRef] Chitrakar,R.;Kanoh,H.;Miyai,Y.;Ooi,K.Recoveryoflithiumfromseawaterusingmanganeseoxideadsorbent(H1.6Mn1.6O4) derived from Li1.6Mn1.6O4. Ind. Eng. Chem. Res. 2001, 40, 2054–2058. [CrossRef] Zhang,Q.-H.;Sun,S.;Li,S.;Jiang,H.;Yu,J.-G.AdsorptionoflithiumionsonnovelnanocrystalMnO2.Chem.Eng.Sci.2007,62, 4869–4874. [CrossRef] Liu,L.;Zhang,H.;Zhang,Y.;Cao,D.;Zhao,X.LithiumextractionfromseawaterbymanganeseoxideionsieveMnO2·0.5H2O. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 280–284. [CrossRef] Besserguenev, A.; Fogg, A.; Francis, R.; Price, S.; O’hare, D.; Isupov, V.; Tolochko, B. Synthesis and Structure of the Gibbsite Intercalation Compounds [LiAl2 (OH)6] X (X = Cl, Br, NO3) and [LiAl2 (OH)6] Cl-H2O Using Synchrotron X-ray and Neutron Powder Diffraction. Chem. Mater. 1997, 9, 241–247. [CrossRef] Isupov,V.P.Intercalationcompoundsofaluminumhydroxide.J.Struct.Chem.1999,40,672–685.[CrossRef] Kotsupalo,N.;Ryabtsev,A.;Poroshina,I.;Kurakov,A.;Mamylova,E.;Menzheres,L.;Korchagin,M.Effectofstructureonthe sorption properties of chlorine-containing form of double aluminum lithium hydroxide. Russ. J. Appl. Chem. 2013, 86, 482–487. [CrossRef] Shi,X.-C.;Zhang,Z.-B.;Zhou,D.-F.;Zhang,L.-F.;Chen,B.-Z.;Yu,L.-L.SynthesisofLi+adsorbent(H2TiO3)anditsadsorption properties. Trans. Nonferrous Met. Soc. China 2013, 23, 253–259. [CrossRef] Zhang, L.; Zhou, D.; He, G.; Wang, F.; Zhou, J. Effect of crystal phases of titanium dioxide on adsorption performance of H2TiO3-lithium adsorbent. Mater. Lett. 2014, 135, 206–209. [CrossRef] Zhang, L.; Zhou, D.; Yao, Q.; Zhou, J. Preparation of H2TiO3-lithium adsorbent by the sol–gel process and its adsorption performance. Appl. Surf. Sci. 2016, 368, 82–87. [CrossRef] Paranthaman,M.P.;Li,L.;Luo,J.Q.;Hoke,T.;Ucar,H.;Moyer,B.A.;Harrison,S.RecoveryofLithiumfromGeothermalBrine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486. [CrossRef] Bauman,W.C.;Burba,J.L.RecoveryofLithiumValuesfromBrines.U.S.Patent5,599,516,4February1997. Wang, S.-L.; Lin, C.-H.; Yan, Y.-Y.; Wang, M.K. Synthesis of Li/Al LDH using aluminum and LiOH. Appl. Clay Sci. 2013, 72, 191–195. [CrossRef] Belova,T.P.TheAnalysisofSorptionExtractionofBoronandLithiumfromtheGeothermalHeatCarriers.InProceedingsofthe World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. Belova,T.P.ExperimentalStudiesintheSorptiveExtractionofBoronandLithiumfromThermalWaters.J.Volcanol.Seismol.2017, 11, 136–142. [CrossRef] Wisniewska,M.;Fijalkowska,G.;Ostolska,I.;Franus,W.;Nosal-Wiercinska,A.;Tomaszewska,B.;Goscianska,J.;Wojcik,G. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). J. Clean. Prod. 2018, 195, 821–830. [CrossRef] Jiang,H.X.;Yang,Y.;Sun,S.Y.;Yu,J.G.Adsorptionoflithiumionsonlithium-aluminumhydroxides:Equilibriumandkinetics. Can. J. Chem. Eng. 2019, 98, 544–555. [CrossRef] Fogg,A.M.;O’Hare,D.Studyoftheintercalationoflithiumsaltingibbsiteusingtime-resolvedinsituX-raydiffraction.Chem. Mater. 1999, 11, 1771–1775. [CrossRef] Fogg, A.M.; Freij, A.J.; Parkinson, G.M. Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides. Chem. Mater. 2002, 14, 232–234. [CrossRef] Menzheres,L.T.;Ryabtsev,A.D.;Mamylova,E.V.Interactionofaluminumsaltswithlithiumhydroxideinaqueoussolution.Russ. J. Inorg. Chem. 2004, 49, 810–815. Yu,C.-L.;Wang,F.;Cao,S.-Y.;Gao,D.-P.;Hui,H.-B.;Guo,Y.-Y.;Wang,D.-Y.ThestructureofH2TiO3—Ashortdiscussionon “Lithium recovery from salt lake brine by H2 TiO3”. Dalton Trans. 2015, 44, 15721–15724. [CrossRef] 125. Qu, J.; He, X.; Wang, B.; Zhong, L.; Wan, L.; Li, X.; Song, S.; Zhang, Q. Synthesis of Li–Al layered double hydroxides via a mechanochemical route. Appl. Clay Sci. 2016, 120, 24–27. [CrossRef] 126. Wu,L.L.;Li,L.;Evans,S.F.;Eskander,T.A.;Moyer,B.A.;Hu,Z.C.;Antonick,P.J.;Harrison,S.;Paranthaman,M.P.;Riman,R.;etal. Lithium aluminum-layered double hydroxide chlorides (LDH): Formation enthalpies and energetics for lithium ion capture. J. Am. Ceram Soc. 2019, 102, 2398–2404. [CrossRef]PDF Image | Recovery of Lithium from Geothermal Brines
PDF Search Title:
Recovery of Lithium from Geothermal BrinesOriginal File Name Searched:
energies-14-06805-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |