
PDF Publication Title:
Text from PDF Page: 014
Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article (6) Alsabbagh, A.; Aljarrah, S.; Almahasneh, M. Lithium Enrichment Optimization from Dead Sea End Brine by Chemical Precipitation Technique. Miner. Eng. 2021, 170, 107038. (7) Meng, F.; McNeice, J.; Zadeh, S. S.; Ghahreman, A. Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Miner. Process. Extr. Metall. Rev. 2021, 42, 123−141. (8) Ambrose, H.; Kendall, A. Understanding the Future of Lithium: Part 1, Resource Model. J. Ind. Ecol. 2020, 24, 80−89. (9) Kavanagh, L.; Keohane, J.; Garcia Cabellos, G. G.; Lloyd, A.; Cleary, J. Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources 2018, 7, 57. (10) Bonin, L.; Deduytsche, D.; Wolthers, M.; Flexer, V.; Rabaey, K. Boron Extraction Using Selective Ion Exchange Resins Enables Effective Magnesium Recovery from Lithium Rich Brines with Minimal Lithium Loss. Sep. Purif. Technol. 2021, 275, 119177. (11) Han, B.; Porvali, A.; Lundström, M.; Louhi-Kultanen, M. Lithium Recovery by Precipitation from Impure Solutions − Lithium Ion Battery Waste. Chem. Eng. Technol. 2018, 41, 1205−1210. (12) Zheng, H.; Dong, T.; Sha, Y.; Jiang, D.; Zhang, H.; Zhang, S. Selective Extraction of Lithium from Spent Lithium Batteries by Functional Ionic Liquid. ACS Sustain. Chem. Eng. 2021, 9, 7022− 7029. (13) Chen, X.; Luo, C.; Zhang, J.; Kong, J.; Zhou, T. Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process. ACS Sustain. Chem. Eng. 2015, 3, 3104−3113. (14) Biswal, B. K.; Jadhav, U. U.; Madhaiyan, M.; Ji, L.; Yang, E. H.; Cao, B. Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12343−12352. (15) Kumar, A.; Fukuda, H.; Hatton, T. A.; Lienhard, J. H. Lithium Recovery from Oil and Gas Produced Water: A Need for a Growing Energy Industry. ACS Energy Lett. 2019, 4, 1471−1474. (16) Meshram, P.; Pandey, B. D.; Mankhand, T. R. Extraction of Lithium from Primary and Secondary Sources by Pre-Treatment, Leaching and Separation: A Comprehensive Review. Hydrometallurgy 2014, 150, 192−208. (17) Toba, A. L.; Nguyen, R. T.; Cole, C.; Neupane, G.; Paranthaman, M. P. U. S. Lithium Resources from Geothermal and Extraction Feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. (18) Liu, J.; Zhang, Y.; Miao, Y.; Yang, Y.; Li, P. Alkaline Resins Enhancing Li+/H+Ion Exchange for Lithium Recovery from Brines Using Granular Titanium-Type Lithium Ion-Sieves. Ind. Eng. Chem. Res. 2021, 60, 16457−16468. (19) Han, B.; Anwar UI Haq, R.; Louhi-Kultanen, M. Lithium Carbonate Precipitation by Homogeneous and Heterogeneous Reactive Crystallization. Hydrometallurgy 2020, 195, 105386. (20) Zhou, W.; Li, Z.; Xu, S. Extraction of Lithium from Magnesium-Rich Solution Using Tri-n-Butyl Phosphate and Sodium Hexafluorophosphate. J Sustain Metall 2021, 7, 1368−1378. (21)Yáñez-Fernández,A.;Inestrosa-Izurieta,M.J.;Urzuá,J.I. Concurrent Magnesium and Boron Extraction from Natural Lithium Brine and Its Optimization by Response Surface Methodology. Desalination 2021, 517, 115269. (22) Matsumoto, M.; Morita, Y.; Yoshinaga, M.; Hirose, S. I.; Onoe, K. Reactive Crystallization of Lithium Carbonate Nanoparticles by Microwave Irradiation of Aqueous Solution Containing CO2 Microbubbles. J. Chem. Eng. Jpn. 2009, 42, S242−S248. (23) Sun, Y.; Song, X.; Wang, J.; Yu, J. Preparation of Li 2CO 3 by Gas-Liquid Reactive Crystallization of LiOH and CO 2. Cryst. Res. Technol. 2012, 47, 437−442. (24) Sun, Y. Z.; Song, X. F.; Jin, M. M.; Jin, W.; Yu, J. G. Gas-Liquid Reactive Crystallization of Lithium Carbonate by a Falling Film Column. Ind. Eng. Chem. Res. 2013, 52, 17598−17606. (25) Tian, M.; Wang, Z.; Cao, J.; Guo, J.; Gong, X. Insight into Lithium Carbonate Crystallization in the Mild Reaction System LiCl- NH3·H2O-CO2 by Stabilizing the Solution with NH3·H2O. J. Cryst. Growth 2019, 520, 46−55. (26) Zhou, Z.; Liang, F.; Qin, W.; Fei, W. Coupled Reaction and Solvent Extraction Process to Form Li2CO3: Mechanism and Product Characterization. AIChE J. 2014, 60, 282−288. (27) Zhao, C.; Zhang, Y.; Cao, H.; Zheng, X.; Van Gerven, T.; Hu, Y.; Sun, Z. Lithium Carbonate Recovery from Lithium-Containing Solution by Ultrasound Assisted Precipitation. Ultrason. Sonochem. 2019, 52, 484−492. (28) Zhu, S. G.; He, W. Z.; Li, G. M.; Zhou, X.; Zhang, X. J.; Huang, J. W. Recovery of Co and Li from Spent Lithium-Ion Batteries by Combination Method of Acid Leaching and Chemical Precipitation. Trans. Nonferrous Met. Soc. China 2012, 22, 2274−2281. (29) Sun, Y.; Song, X.; Wang, J.; Luo, Y.; Yu, J. Unseeded Supersolubility of Lithium Carbonate: Experimental Measurement and Simulation with Mathematical Models. J. Cryst. Growth 2009, 311, 4714−4719. (30) Wang, H.; Du, B.; Wang, M. Study of the Solubility, Supersolubility and Metastable Zone Width of Li2CO3 in the LiCl- NaCl-KCl-Na2SO4 System from 293.15 to 353.15K. J. Chem. Eng. Data 2018, 63, 1429−1434. (31) Ma, Y.; Zhang, Z.; Li, K.; Pang, D. Effects of K+, Na+, Mg2 and B4O72- Coexistence Impurities on Crystalline Characteristics of Lithium Carbonate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 022011. (32) King, H. E.; Salisbury, A.; Huijsmans, J.; Dzade, N. Y.; Plümper, O. Influence of Inorganic Solution Components on Lithium Carbonate Crystal Growth. Cryst. Growth Des. 2019, 19, 6994−7006. (33) An, J. W.; Kang, D. J.; Tran, K. T.; Kim, M. J.; Lim, T.; Tran, T. Recovery of Lithium from Uyuni Salar Brine. Hydrometallurgy 2012, 117−118, 64−70. (34) Jiang, C.; Wang, Y.; Wang, Q.; Feng, H.; Xu, T. Production of Lithium Hydroxide from Lake Brines through Electro-Electrodialysis with Bipolar Membranes (EEDBM). Ind. Eng. Chem. Res. 2014, 53, 6103−6112. (35) Um, N.; Hirato, T. Precipitation Behavior of Ca(OH)2, Mg(OH)2, and Mn(OH)2 from CaCl2, MgCl2, and MnCl2 in NaOH-H2O Solutions and Study of Lithium Recovery from Seawater via Two-Stage Precipitation Process. Hydrometallurgy 2014, 146, 142−148. (36) Xu, Z.; Zhang, H.; Wang, R.; Gui, W.; Liu, G.; Yang, Y. Systemic and Direct Production of Battery-Grade Lithium Carbonate from a Saline Lake. Ind. Eng. Chem. Res. 2014, 53, 16502−16507. (37) Quintero, C.; Dahlkamp, J. M.; Fierro, F.; Thennis, T.; Zhang, Y.; Videla, Á.; Rojas, R. Development of a Co-Precipitation Process for the Preparation of Magnesium Hydroxide Containing Lithium Carbonate from Li-Enriched Brines. Hydrometallurgy 2020, 198, 105515. 13602 https://doi.org/10.1021/acs.iecr.2c01397 Ind. Eng. Chem. Res. 2022, 61, 13589−13602PDF Image | Recovery of Lithium Carbonate from Dilute Li Rich Brine
PDF Search Title:
Recovery of Lithium Carbonate from Dilute Li Rich BrineOriginal File Name Searched:
acs.iecr.2c01397.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |