
PDF Publication Title:
Text from PDF Page: 025
Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water... DOI: http://dx.doi.org/10.5772/intechopen.90371 Figure 8. Crystal structure of Li4Ti5O12 (yellow tetrahedra represent lithium, and green octahedra represent disordered lithium and titanium) [39]. Reproduced from Ref. [39]. Ti 2/3. In fact, in the structure of Li2TiO3, lithium ions in the layers make up 75% of the total amount of lithium, while the surviving 25% are in layers (LiTi2) [53]. Accordingly, whole lithium ions are changed by protons in the layered struc- ture of H2TiO3. Accordingly, in early studies, some researchers believed that the structure of H2TiO3 was converted from layered Li2TiO3 by topotactic substitution of lithium ions by protons. The authors explore the composition of H2TiO3 by reviewing the variation among Li2TiO3 and H2TiO3 and modeling the XRD patterns of HxLi2−xTiO3 (0 ≤ x ≤ 2), they pointed out that a structure with a layered double hydroxide type with a sequence of 3R1 oxygen layers is more acceptable for H2TiO3, and H2TiO3 can be described as laying charge-neutral metal oxyhydroxide plates [(OH)2OTi2O(OH)2] [202]. In advanced research, requires additional experimental testing to confirm the well-honed structure. In 1988, Onodera et al. first obtained Li2TiO3 [203], many kinds of research have been conducted on its electrochemical application [204–208] and in the degradation of pollutants the photocatalytic applications [209–211]. Chitrakar et al. investigated the behavior of ion exchange in salt lake brines [53]. While the rate of adsorption of lithium was relatively slow (it took 1day to reach equilibrium at room temperature), at pH 6.5 the capacity of the Li+ can reach up to 32.6 mg g−1, that is among the adsor- bents of lithium the greatest value is studied in an acidic solution. Besides, H2TiO3 has been found to be able to efficiently absorb lithium ions from Na+, K+, Mg2+ and Ca2+ containing competitive cations in brine. With ionic radii exceeding Li+ (0.074 nm), it is not possible to introduce sites into the LTO adsorbent, since exchange sites have radii sizes Na+ (0.102 nm), K+ (0.138 nm) and Ca2+ (0.100 nm), which do not allow adsorption due to the large size of the ionic radii. Although the ionic radius of Mg2+ (0.072 nm) is close to the ionic radii of Li+, dehydration of magnesium ions requires high energy to enter the exchange nodes, since the free hydration energy for Mg (∆G0h = −1980 kJ mol−1) is four times greater than for Li (∆G0h = −475 kJ mol−1) [212]. In addition, the Li-Mg separation ratio reached 102.4 on the 8th adsorption cycle, that in salt lake brines represents the excellent separation of Li+ and Mg2+ found by Shi et al. [40]. In designing the orthogonal test, the maximum absorption of lithium by H2TiO3 reached 57.8 mg g−1 at the optimal state studied by He et al. [213]. 23PDF Image | Lithium Recovery from Seawater Salt Lake Brine
PDF Search Title:
Lithium Recovery from Seawater Salt Lake BrineOriginal File Name Searched:
IntechOpenSamadiyBookchapter.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |