Lithium Recovery from Seawater Salt Lake Brine

PDF Publication Title:

Lithium Recovery from Seawater Salt Lake Brine ( lithium-recovery-from-seawater-salt-lake-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Lithium Recovery from Brines Including Seawater, Salt Lake Brine, Underground Water... DOI: http://dx.doi.org/10.5772/intechopen.90371 Figure 7. (a) Cubic spinel lithium manganese oxide quadrants were comparison and (b) recorded under the 8.6 GPa. C, cubic spinel phase (spatial group Fd3m); W, tungsten strip model of polyhedral structure and structure refinement by Rietveld X-ray diffraction powder sample for Li1.33Mn1.67O4 (or Li4Mn5O12). 7.1.3 The doping modification Because of the specific configuration of the 3d electron orbit, Mn3+ can cause the Jahn-teller effect, which can cause severe distortions in the octahedral structure of MnO6. This distortion will be accompanied by a decrease in LMO stability and a decrease in the efficiency of the intercalation/deintercalation process of Li+ [153–157]. Much more seriously in industrial operations dissolving large amounts of manganese in water can lead to water contamination. Consequently, some alloying modifications have been proposed to replace Mn3+ with other metal ions, which is more efficient. In the field of lithium-ion batteries, a wide variety of cation substitution (including Co2+, Ni2+, Cr3+, Mg2+, Al3+, Fe3+ and ions of rare earth element) has been applied to inhibit capacity fading and improve electrochemical performance [158–183]. Analogously, modifications of LIS by doping with metal ions to improve the absorption properties of lithium in aqueous solutions are proposed. The effect of LimMgxMn(III)yMn(IV)zO4 (0 ≤ x ≤ 0.5) on the dissolution of manganese within acid treatment, the results showed that the adsorption capacity of lithium and the chemical stability of protonated samples increased with the mg/MN ratio studied by Chitrakar et al. [181]. Mild chemical method of Mg2+ doped lithium- manganese spinel synthesized by Tian et al. [36]. During the periodic experiment, it was found that the sorption of Li+ showed a high pH and a dependence profile of the initial concentration. In addition, kinetic experiments have shown that the adsorption process followed by a pseudo-second-order model. Li+ extraction process in both compound LiMg0.5Mn1.5O4 spinel and LiZn0.5Mn1.5O4 spinel studied by Feng et al. [182, 183]. Discovered that the extraction and insertion of Li+ are topotaxically through ion exchange mechanisms. In addition, with LiAlMnO4 and LiFeMnO4 spinel Li+ extraction/insertion reactions in the aqueous phase, also follow the ion exchange mechanisms tested by Liu et al. [184]. LiMxMn2-xO4 spinel series (M = Ni, Al, Ti; 0 ≤ x ≤ 1) and comparison of their lithium reduc- tion properties in aqueous solutions prepared by Ma et al. [185]. Studies have shown that LiAl0.5Mn1.5O4 spinels exhibit relatively high Li extraction coefficient and relatively low Mn and Al extraction coefficients when treated with acid, and 21

PDF Image | Lithium Recovery from Seawater Salt Lake Brine

PDF Search Title:

Lithium Recovery from Seawater Salt Lake Brine

Original File Name Searched:

IntechOpenSamadiyBookchapter.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)