Lithium Recovery from Seawater Salt Lake Brine

PDF Publication Title:

Lithium Recovery from Seawater Salt Lake Brine ( lithium-recovery-from-seawater-salt-lake-brine )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Thermodynamics and Energy Engineering Figure 4. (a) An isothermal cross section of the Li-Mn-O phase diagram at 25°C and (b) an expanded region of the Li-Mn-O phase diagram. Figure 5. Phase diagram of LMO and their delithiated products [47]. Reproduced from Ref. [47]. 7.1.2 The spinel structure of the precursors of LMO Inevitably, the chemical properties depend on the chemical structures to be determined, so the extraction of lithium by LMO precursors is explained by their peculiar chemical structure. Actually, all synthesized precursors of LMOs have spinel structures [144–152]. Among these, the LiMn2O4 structure is the most representative one, as shown in Figure 6. Spinel LiMn2O4 has a cubic crystal structure that belongs to the spatial group Fd3m. The structure shows that the tetrahedron’s 8a sites occupy lithium ions. At a molar ratio of 1:1, Mn3+ and Mn4+ ions are randomly distributed over 16d sites of octahedra, and oxygen anions occupy 32e sites of the face-centered cubes. Accordingly, the formula (Li)8a[Mn(III)Mn(IV)]16dO4 can be represented by spinels LiMn2O4, which can be described by the general spinel formula (AB2O4). From other side, the LiMn2O4 unit cell can be viewed as a complex cubic structure: oxygen atoms are 32 and 16 manganese atoms occupy half of the octahedral pore (16d), while the other half of the sections (16c) are free. Here are 8 of the lithium atoms occupy 1/8 of tetrahedral interstices plot (8a). Li+ can intercalate/deintercalate in three-dimensional networks of free octahedral and octahedral gaps along the 18

PDF Image | Lithium Recovery from Seawater Salt Lake Brine

PDF Search Title:

Lithium Recovery from Seawater Salt Lake Brine

Original File Name Searched:

IntechOpenSamadiyBookchapter.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)