
PDF Publication Title:
Text from PDF Page: 014
https://doi.org/10.1595/205651317X696676 Johnson Matthey Technol. Rev., 2018, 62, (2) Patent Appl. 1979/4,159,311 63. W. C. Bauman and J. L. Burba III, FMC Corp, ‘Composition for the Recovery of Lithium Values from Brine and Process of Making/Using Said Composition’, US Patent, 6,280,693; 2001 64. N. P. Kotsupalo, A. D. Ryabtsev, I. A. Poroshina, A. A. Kurakov, E. V. Mamylova, L. T. Menzheres and M. A. Korchagin, Russ. J. Appl. Chem., 2013, 86, (4), 482 65. J. L. Burba III, R. F. Stewart, B. E. Viani, S. Harrison, C. E. Vogdes and J. G. S. Lahlouh, Simbol Inc, ‘Improved Sorbent for Lithium Extraction’, World Patent Appl., 2015/171,109 66. X. Wen, P. Ma, C. Zhu, Q. He and X. Deng, Sep. Purif. Technol., 2006, 49, (3), 230 67. Q. Bi, Z. Zhang, C. Zhao and Z. Tao, Water Sci. Technol., 2014, 70, (10), 1690 68. S.-Y. Sun, L.-J. Cai, X.-Y. Nie, X. Song and J.-G. Yu, J. Water Process Eng., 2015, 7, 210 69. W. Li, C. Shi, A. Zhou, X. He, Y. Sun and J. Zhang, Sep. Purif. Technol., 2017, 186, 233 70. Z. Zhao, X. Si, X. Liu, L. He and X. Liang, Hydrometallurgy, 2013, 133, 75 71. X. Liu, X. Chen, Z. Zhao and X. Liang, Hydrometallurgy, 2014, 146, 24 72. X. Liu, X. Chen, L. He and Z. Zhao, Desalination, 2015, 376, 35 73. T. Hoshino, Fusion Eng. Des., 2013, 88, (11), 2956 74. T. Hoshino, Desalination, 2015, 359, 59 75. T. Hoshino, Desalination, 2013, 317, 11 76. Z. Ji, Q. Chen, J. Yuan, J. Liu, Y. Zhao and W. Feng, Sep. Purif. Technol., 2017, 172, 168 77. P. Ma, X. D. Chen and M. M. Hossain, Sep. Sci. Technol., 2000, 35, (15), 2513 78. L. Xing, J. Song, Z. Li, J. Liu, T. Huang, P. Dou, Y. Chen, X.-M. Li and T. He, J. Membrane Sci., 2016, 520, 596 79. J. Song, X.-M. Li, Y. Zhang, Y. Yin, B. Zhao, C. Li, D. Kong and T. He, J. Membrane Sci., 2014, 471, 372 80. Y. Guo, Y. Ying, Y. Mao, X. Peng and B. Chen, Angew. Chem., 2016, 128, (48), 15344 81. A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane and K. Ooi, Ind. Eng. Chem. Res., 2002, 41, (17), 4281 82. K.-S. Chung, J.-C. Lee, W.-K. Kim, S. B. Kim and K. Y. Cho, J. Membrane Sci., 2008, 325, (2), 503 83. W.-J. Chung, R. E. C. Torrejos, M. J. Park, E. L. Vivas, L. A. Limjuco, C. P. Lawagon, K. J. Parohinog, S.-P. Lee, H. K. Shon, H. Kim and G. M. Nisola, Chem. Eng. J., 2017, 309, 49 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. M. J. Park, G. M. Nisola, E. L. Vivas, L. A. Limjuco, C. P. Lawagon, J. G. Seo, H. Kim, H. K. Shon and W.-J. Chung, J. Membrane Sci., 2016, 510, 141 R. Bhave, V. Deshmane and D. Kim, ‘Selective Recovery of Lithium from Geothermal Brine Using Novel Mixed Matrix Membranes Supported on Hollow Fiber and Inorganic Supports’, 2018, in preparation J. A. Epstein, E. M. Feist, J. Zmora and Y. Marcus, Hydrometallurgy, 1981, 6, (3–4), 269 D. A. Lee, W. L. Taylor, W. J. McDowell and J. S. Drury, J. Inorg. Nucl. Chem., 1968, 30, (10), 2807 C. Shi, Y. Jing and Y. Jia, J. Mol. Liq., 2016, 215, 640 C. Shi, Y. Jing and Y. Jia, Russ. J. Phys. Chem. A, 2017, 91, (4), 692 B. El-Eswed, M. Sunjuk, Y. S. Al-Degs and A. Shtaiwi, Separ. Sci. Technol., 2014, 49, (9), 1342 E. G. Pinna, M. C. Ruiz, M. W. Ojeda and M. H. Rodriguez, Hydrometallurgy, 2017, 167, 66 G. P. Nayaka, J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny and V. S. Tripathi, Hydrometallurgy, 2015, 151, 73 M. Joulié, E. Billy, R. Laucournet and D. Meyer, Hydrometallurgy, 2017, 169, 426 S.-H. Joo, D. ju Shin, C. Oh, J.-P. Wang, G. Senanayake and S. M. Shin, Hydrometallurgy, 2016, 159, 65 C. K. Lee and K.-I. Rhee, J. Power Sources, 2002, 109, (1), 17 J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang and B. Liang, J. Power Sources, 2008, 177, (2), 512 M. Contestabile, S. Panero and B. Scrosati, J. Power Sources, 2001, 92, (1–2), 65 S. Castillo, F. Ansart, C. Laberty-Robert and J. Portal, J. Power Sources, 2002, 112, (1), 247 D. C. R. Espinosa, A. M. Bernardes and J. A. S. Tenório, J. Power Sources, 2004, 135, (1–2), 311 P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki and K. Inoue, Hydrometallurgy, 1998, 47, (2–3), 259 L. Li, J. Ge, F. Wu, R. Chen, S. Chen and B. Wu, J. Hazard. Mater., 2010, 176, (1–3), 288 J. Nan, D. Han and X. Zuo, J. Power Sources, 2005, 152, 278 B. Swain, J. Jeong, J. Lee, G.-H. Lee and J.-S. Sohn, J. Power Sources, 2007, 167, (2), 536 J. Ordoñez, E. J. Gago and A. Girard, Renew. Sustain. Energy Rev., 2016, 60, 195 Y. Guo, F. Li, H. Zhu, G. Li, J. Huang and W. He, 174 © 2018 United States GovernmentPDF Image | Lithium Recovery from Aqueous Resources
PDF Search Title:
Lithium Recovery from Aqueous ResourcesOriginal File Name Searched:
b8befda967a8ccf19190203d3b5aeae0673f.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.| CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |