Lithium Occurrences in Brines from Two German Salt Deposits

PDF Publication Title:

Lithium Occurrences in Brines from Two German Salt Deposits ( lithium-occurrences-brines-from-two-german-salt-deposits )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Minerals 2019, 9, 766 20 of 21 34. Behlau, J.; Mingerzahn, G. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Eng. Geol. 2001, 61, 83–97. [CrossRef] 35. Schramm, M. Genetische Interpretation Salinarer Lösungen aus dem Grubengebäude (ERAM). Zutrittsvolumina, Geochemische Zusammensetzung, Herkunft und Sicherheitliche Bewertung der Lösungszutritte in Lager H und in Abbau 1a im Zeitraum 01.01.2011 bis 31.12.2013; BGR Unveröffentl.: Berlin Germany, 2015; p. 337. 36. Herrmann, A.G. Die Bedeutung der Spurenelementanalyse für salzlagerstättenkundliche Untersuchungen—Mineralsalze ozeanischen Ursprungs. Symposium Freiberger Forschungshefte A 1958, 123, 83–94. 37. Orberger, B.; Rojas, W.; Millot, R.; Flehoc, C. Stable isotopes (Li, O, H) combined with brine chemistry: Powerful tracers for Li origins in Salar deposits from the Puna region, Argentinia. Procedia Earth Planet. Sci. 2015, 13, 307–311. [CrossRef] 38. Thiemeyer, N.; Zulauf, G.; Mertineit, M.; Linckens, J.; Pusch, M.; Hammer, J. Microfabrics and 3D grain shape of Gorleben rock salt: Constraints on deformation mechanisms and palaeodifferential stress. Tectonophysics 2016, 676, 1–19. [CrossRef] 39. BfS. ERA Morsleben. Erarbeitung Eines Geologischen Lagerstättenmodells Morsleben. Teil 1 von 2. Procedural Document P 044; Bundesamt für Strahlenschutz: Salzgitter, Germany, 2000; p. 73. 40. Bruland, K.W. Trace elements in seawater. In Chemical Oceanography; Riley, J.P., Chester, R., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 157–220. 41. Usdowski, E.; Dietzel, M. Atlas and Data of Solid-Solution Equilibria of Marine Evaporites; Springer: Berlin, Germany, 1998; p. 316. 42. Wolery, T.J. EQ3/6 Software Package, Version 7.2c; Lawrence Livermore National Laboratory: Livermore, CA USA, 1992. 43. Harvie, C.E.; Moeller, N.; Weare, J.H. The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO2–H2O system to high ionic strengths at 25 ◦C. Geochim. Cosmochim. Acta 1984, 48, 723–751. [CrossRef] 44. Schramm, M.; Mertineit, M. Experimental studies of lepidolite stability in saline solutions at 22–25 ◦C with respect to Li, Si, Rb & Cs. In Proceedings of the Goldschmidt Conference (Goldschmidt Abstracts; 3014), Paris, France, 13–18 August 2017. 45. Goldberg, E.D.; Broecker, W.S.; Gross, M.G.; Tuekian, K.K. Marine Chemistry. In Radioactivity in the Marine Environment; Academy of Sciences: Washington, DC, USA, 1971; Volume 5, pp. 137–145. 46. Heynes, W.M. (Ed.) Handbook of Chemistry and Physics, 97st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2016–2017. 47. Herrmann, A.G. Über das Vorkommen einiger Spurenelemente in Salzlösungen aus dem deutschen Zechstein. Kali Steinsalz 1961, 3, 209–220. 48. Elert, K.-H.; Henning, I.; Knabe, H.-J. Untertägige Erdöl-Vorkommen und ihre bergbausicherheitliche Beurteilung. Z. Angew. Geol. 1988, 34, 139–144. 49. Mattenklott, M. Die Bromid- und Rubidiumverteilung in Carnallitgesteinen. Ph.D. Thesis, Technical Univ. Clausthal, Clausthal, Germany, 1994; p. 214. 50. Peters, H. Stoffbestand und Genese des Kaliflözes Riedel (K3RI) im Salzstock Wathlingen-Hänigsen, Werk Niedersachsen-Riedel. Ph.D. Thesis, University of Göttingen, Göttingen, Germany, 1988; p. 213. 51. Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming-Minerals. Sheet silicates: Micas. Geol. Soc. 2003, 3, 758. 52. Von Strandmann, P.A.; Fraser, W.A.; Hammond, S.J.; Tarbuck, G.; Wood, I.G.; Oelkers, E.H.; Murphy, M.J. Experimental determination of Li isotope behavior during basalt weathering. Chem. Geol. 2019, 517, 34–43. [CrossRef] 53. Bräuer, V.; Eickemeier, R.; Eisenburger, D.; Grissemann, C.; Hesser, J.; Heusermann, S.; Kaiser, D.; Nipp, H.-K.; Nowak, T.; Plischke, I. Description of the Gorleben Site Part 4: Geotechnical Exploration of the Gorleben Salt Dome; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2011; p. 183. 54. Herrmann, A.G.; Siewers, U.; Harazim, B.; Usdowski, E. Kriterien zur Beurteilung von Salzlösungen in den Zechsteinevaporiten Mittel- und Norddeutschlands. Kali Steinsalz 2003, 3, 24–35. 55. Sonnenfeld, D. Brines and Evaporites; Academic Press: Orlando, FL, USA, 1984; p. 613. 56. Ohrdorf, R. Ein Beitrag zur Geochemie des Lithiums in Sedimentgesteinen. Geochim. Cosmochim. Acta 1968, 32, 191–208. [CrossRef]

PDF Image | Lithium Occurrences in Brines from Two German Salt Deposits

PDF Search Title:

Lithium Occurrences in Brines from Two German Salt Deposits

Original File Name Searched:

minerals-09-00766-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Product and Development Focus for Infinity Turbine

ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.

Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system.

Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications.

We call it the Cogeneration Battery or Cogen Battery.

One project is converting salt (brine) based water conditioners to simultaneously produce power.

In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).

Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).

We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)