PDF Publication Title:
Text from PDF Page: 018
Minerals 2019, 9, 766 18 of 21 Table A5. Mg and Li concentrations during evaporation of seawater (Mg in wt. % and Li in μg/g). The calculations were performed with EQ3/6v7.2c. Calculation No. evasea1 evasea2 evasea3 evasea4 evasea5 evasea6 evasea7 evasea8 evasea9 evasea10 evasea11 evasea12 evasea13 evasea14 evasea15 evasea16 evasea17 evasea18 evasea19 evasea20 evasea21 evasea22 evasea23 evasea24 Seawater Mg2+ Li+ 1000.00 0.13 0.17 930.46 0.14 0.18 652.27 0.20 0.26 582.73 0.22 0.29 513.18 0.25 0.33 443.63 0.29 0.38 374.09 0.34 0.45 310.01 0.41 0.55 304.50 0.42 0.56 234.41 0.54 0.73 169.88 0.75 1.00 168.10 0.75 1.01 164.19 0.77 1.04 136.25 0.92 1.25 123.90 1.02 1.37 84.17 1.50 2.02 37.22 3.38 4.57 17.64 6.56 9.63 14.80 7.43 12.83 7.82 11.38 7.82 11.31 7.84 8.22 7.84 6.51 8.98 11.49 13.25 14.94 15.04 20.67 26.12 References 1. Herrmann, A.G. Untergrund-Deponie anthropogener Schadstoffe. Fortschr. Miner. 1987, 63, 307–323. 2. Von Borstel, L.E. Lösungen in marinen Evapoirten. BfS-Schriften 1994, 10, 314. 3. Herrmann, A.G.; Siewers, U.; Harazim, B.; Lodziak, J.; Weck, H.-D.; Straßburg, S. Die Herkunft von Haupt-, Neben- und Spurenelementen in Salzlösungen der Zechsteinevaporite Mittel- und Norddeutschlands. Kali Steinsalz 2000, 13, 97–109. 4. Ruprecht, J. Evaluation of Geochemical Tools to Determine the Origin and Genesis of Saline Solutions Percolating within Rock Salt and Potash Deposits of the German Zechstein Basin. Kali Steinsalz 2010, 2, 24–34. 5. Bornemann, O.; Behlau, J.; Fischbeck, R.; Hammer, J.; Jaritz, W.; Keller, S.; Mingerzahn, G.; Schramm, M. Description of the Gorleben Site Part 3: Results of the Geological Surface and Underground Exploration of the Salt Formation; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2008; p. 223. 6. Herrmann, A.G.; Rühe, S. Lösungseinschlüsse in Zechsteinevaporiten—Neue Perspektiven in der anwendungsorientierten Grundlagenforschung. Kali Steinsalz 1995, 11, 345–354. 7. Hammer, J.; Pusch, M.; Häger, A.; Ostertag-Henning, C.; Thiemeyer, N.; Zulauf, G. Hydrocarbons in rock salt of the Gorleben salt dome—Amount, distribution, origin, and influence on geomechanical properties. In Proceedings of the 8th Conference Mechanical Behavior of Salt VIII; Roberts, L., Mellegard, K., Hansen, F., Eds.; Taylor & Francis Group: London, UK, 2015; pp. 69–75. 8. Warren, J.K. Evaporites. A Geological Compendium, 2nd ed.; Springer: Basel, Switzerland, 2016; p. 1813. 9. Risacher, F.; Fritz, B.; Hauser, A. Origin and components in Chilean thermal waters. J. S. Am. Earth Sci. 2011, 31, 153–170. [CrossRef] 10. Braitsch, O. Salt Deposits, Their Origin and Composition; Springer: Berlin, Germany, 1971; Volume 4, p. 297. 11. Braitsch, O.; Herrmann, A.G. Zur Geochemie des Broms in salinaren Sedimenten. Teil I: Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Systemen. Geochim. Cosmochim. Acta 1963, 27, 361–391. [CrossRef]PDF Image | Lithium Occurrences in Brines from Two German Salt Deposits
PDF Search Title:
Lithium Occurrences in Brines from Two German Salt DepositsOriginal File Name Searched:
minerals-09-00766-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)