PDF Publication Title:
Text from PDF Page: 028
Membranes 2022, 12, 373 28 of 29 137. Hu, J.; Zhang, J.; Li, H.; Chen, Y.; Wang, C. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J. Power Sources 2017, 351, 192–199. [CrossRef] 138. Träger,T.;Friedrich,B.;Weyhe,R.RecoveryConceptofValueMetalsfromAutomotiveLithium-IonBatteries.Chemie-Ingenieur- Technik 2015, 87, 1550–1557. [CrossRef] 139. Nayaka,G.P.;Pai,K.V.;Santhosh,G.;Manjanna,J.DissolutionofcathodeactivematerialofspentLi-ionbatteriesusingtartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy 2016, 161, 54–57. [CrossRef] 140. Nayaka,G.P.;Pai,K.V.;Santhosh,G.;Manjanna,J.Recoveryofcobaltascobaltoxalatefromspentlithiumionbatteriesbyusing glycine as leaching agent. J. Environ. Chem. Eng. 2016, 4, 2378–2383. [CrossRef] 141. Nayaka, G.P.; Manjanna, J.; Pai, K.V.; Vadavi, R.; Keny, S.J.; Tripathi, V.S. Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 2015, 151, 73–77. [CrossRef] 142. Golmohammadzadeh,R.;Rashchi,F.;Vahidi,E.Recoveryoflithiumandcobaltfromspentlithium-ionbatteriesusingorganic acids: Process optimization and kinetic aspects. Waste Manag. 2017, 64, 244–254. [CrossRef] 143. Gao, W.; Song, J.; Cao, H.; Lin, X.; Zhang, X.; Zheng, X.; Zhang, Y.; Sun, Z. Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation. J. Clean. Prod. 2018, 178, 833–845. [CrossRef] 144. Sun,L.;Qiu,K.Organicoxalateasleachantandprecipitantfortherecoveryofvaluablemetalsfromspentlithium-ionbatteries. Waste Manag. 2012, 32, 1575–1582. [CrossRef] 145. Zeng,X.;Li,J.;Shen,B.Novelapproachtorecovercobaltandlithiumfromspentlithium-ionbatteryusingoxalicacid.J.Hazard. Mater. 2015, 295, 112–118. [CrossRef] 146. Chen,X.;Fan,B.;Xu,L.;Zhou,T.;Kong,J.Anatom-economicprocessfortherecoveryofhighvalue-addedmetalsfromspent lithium-ion batteries. J. Clean. Prod. 2016, 112, 3562–3570. [CrossRef] 147. Li,L.;Dunn,J.B.;Zhang,X.X.;Gaines,L.;Chen,R.J.;Wu,F.;Amine,K.Recoveryofmetalsfromspentlithium-ionbatterieswith organic acids as leaching reagents and environmental assessment. J. Power Sources 2013, 233, 180–189. [CrossRef] 148. He,L.P.;Sun,S.Y.;Mu,Y.Y.;Song,X.F.;Yu,J.G.RecoveryofLithium,Nickel,Cobalt,andManganesefromSpentLithium-Ion Batteries Using l-Tartaric Acid as a Leachant. ACS Sustain. Chem. Eng. 2017, 5, 714–721. [CrossRef] 149. Li, L.; Qu, W.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. J. Power Sources 2015, 282, 544–551. [CrossRef] 150. Ferreira, D.A.; Prados, L.M.Z.; Majuste, D.; Mansur, M.B. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J. Power Sources 2009, 187, 238–246. [CrossRef] 151. Nan, J.; Han, D.; Zuo, X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J. Power Sources 2005, 152, 278–284. [CrossRef] 152. Kang,J.;Senanayake,G.;Sohn,J.;Shin,S.M.Recoveryofcobaltsulfatefromspentlithiumionbatteriesbyreductiveleachingand solvent extraction with Cyanex 272. Hydrometallurgy 2010, 100, 168–171. [CrossRef] 153. Takacova, Z.; Havlik, T.; Kukurugya, F.; Orac, D. Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy 2016, 163, 9–17. [CrossRef] 154. Zhang,P.;Yokoyama,T.;Itabashi,O.;Suzuki,T.;Inoue,K.Hydrometallurgicalprocessforrecoveryofmetalvaluesfromspent lithium-ion secondary batteries. Hydrometallurgy 1998, 47, 259–271. [CrossRef] 155. Joulié,M.;Laucournet,R.;Billy,E.Hydrometallurgicalprocessfortherecoveryofhighvaluemetalsfromspentlithiumnickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 2014, 247, 551–555. [CrossRef] 156. Barik, S.P.; Prabaharan, G.; Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Clean. Prod. 2017, 147, 37–43. [CrossRef] 157. Pinna,E.G.;Ruiz,M.C.;Ojeda,M.W.;Rodriguez,M.H.CathodesofspentLi-ionbatteries:Dissolutionwithphosphoricacidand recovery of lithium and cobalt from leach liquors. Hydrometallurgy 2017, 167, 66–71. [CrossRef] 158. Chen,X.;Ma,H.;Luo,C.;Zhou,T.Recoveryofvaluablemetalsfromwastecathodematerialsofspentlithium-ionbatteriesusing mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [CrossRef] [PubMed] 159. Lee,C.K.;Rhee,K.I.PreparationofLiCoO2fromspentlithium-ionbatteries.J.PowerSources2002,109,17–21.[CrossRef] 160. Zhang,X.;Cao,H.;Xie,Y.;Ning,P.;An,H.;You,H.;Nawaz,F.Aclosed-loopprocessforrecyclingLiNi1/3Co1/3Mn1/3O2from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Sep. Purif. Technol. 2015, 150, 186–195. [CrossRef] 161. Xin,Y.;Guo,X.;Chen,S.;Wang,J.;Wu,F.;Xin,B.BioleachingofvaluablemetalsLi,Co,NiandMnfromspentelectricvehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 2016, 116, 249–258. [CrossRef] 162. Xin,B.;Zhang,D.;Zhang,X.;Xia,Y.;Wu,F.;Chen,S.;Li,L.BioleachingmechanismofCoandLifromspentlithium-ionbatteryby the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 2009, 100, 6163–6169. [CrossRef] 163. Saeki,S.;Lee,J.;Zhang,Q.;Saito,F.Co-GrindingLiCoO2withPVCandWaterLeachingofMetalChloridesFormedinGround Product. Int. J. Miner. Process. 2004, 74, 373–378. [CrossRef] 164. Wang,M.M.;Zhang,C.C.;Zhang,F.S.Anenvironmentalbenignprocessforcobaltandlithiumrecoveryfromspentlithium-ion batteries by mechanochemical approach. Waste Manag. 2016, 51, 239–244. [CrossRef]PDF Image | Lithium Harvesting using Membranes
PDF Search Title:
Lithium Harvesting using MembranesOriginal File Name Searched:
membranes-12-00373-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)