PDF Publication Title:
Text from PDF Page: 025
Membranes 2022, 12, 373 25 of 29 51. Tan, H.; Zhang, X.; He, X.; Guo, Y.; Deng, X.; Su, Y.; Yang, J.; Wang, Y. Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. J. Clean. Prod. 2018, 205, 536–551. [CrossRef] 52. Yao, W.; Wang, J.; Wang, P.; Wang, X.; Yu, S.; Zou, Y.; Hou, J.; Hayat, T.; Alsaedi, A.; Wang, X. Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. Environ. Pollut. 2017, 229, 827–836. [CrossRef] 53. Shi, C.; Jing, Y.; Xiao, J.; Wang, X.; Yao, Y.; Jia, Y. Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep. Purif. Technol. 2017, 172, 473–479. [CrossRef] 54. Sekimoto, T.; Nishihama, S.; Yoshizuka, K. Extraction of lithium from salt lake brine with tributyl phosphate and an ionic liquid. Solvent Extr. Res. Dev. Jpn. 2018, 25, 117–123. [CrossRef] 55. Shi, D.; Zhang, L.; Peng, X.; Li, L.; Song, F.; Nie, F.; Ji, L.; Zhang, Y. Extraction of lithium from salt lake brine containing boron using multistage centrifuge extractors. Desalination 2018, 441, 44–51. [CrossRef] 56. Ji, L.; Hu, Y.; Li, L.; Shi, D.; Li, J.; Nie, F.; Song, F.; Zeng, Z.; Sun, W.; Liu, Z. Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3. Hydrometallurgy 2016, 162, 71–78. [CrossRef] 57. Li, H.; Li, L.; Peng, X.; Ji, L.; Li, W. Selective recovery of lithium from simulated brine using different organic synergist. Chin. J. Chem. Eng. 2019, 27, 335–340. [CrossRef] 58. Chen, S.; Gao, D.; Yu, X.; Guo, Y.; Deng, T. Thermokinetics of lithium extraction with the novel extraction systems (tri-isobutyl phosphate+ ionic liquid+ kerosene). J. Chem. Thermodyn. 2018, 123, 79–85. [CrossRef] 59. Zhang, L.; Li, L.; Shi, D.; Peng, X.; Song, F.; Nie, F.; Han, W. Recovery of lithium from alkaline brine by solvent extraction with β-diketone. Hydrometallurgy 2018, 175, 35–42. [CrossRef] 60. Azov, V.A.; Egorova, K.S.; Seitkalieva, M.M.; Kashin, A.S.; Ananikov, V.P. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research. Chem. Soc. Rev. 2018, 47, 1250–1284. [CrossRef] 61. Onghena, B.; Jacobs, J.; van Meervelt, L.; Binnemans, K. Homogeneous liquid–liquid extraction of neodymium (III) by choline hexafluoroacetylacetonate in the ionic liquid choline bis (trifluoromethylsulfonyl) imide. Dalt. Trans. 2014, 43, 11566–11578. [CrossRef] 62. Sun, X.; Do-Thanh, C.L.; Luo, H.; Dai, S. The optimization of an ionic liquid-based TALSPEAK-like process for rare earth ions separation. Chem. Eng. J. 2014, 239, 392–398. [CrossRef] 63. Bai, R.; Wang, J.; Wang, D.; Zhang, Y.; Cui, J. Selective separation of lithium from the high magnesium brine by the extraction system containing phosphate-based ionic liquids. Sep. Purif. Technol. 2021, 274, 119051. [CrossRef] 64. Fang, S.; Zhang, Z.; Jin, Y.; Yang, L.; Hirano, S.I.; Tachibana, K.; Katayama, S. New functionalized ionic liquids based on pyrroli- dinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J. Power Sources 2011, 196, 5637–5644. [CrossRef] 65. Fang, S.; Qu, L.; Luo, D.; Shen, S.; Yang, L.; Hirano, S.I. Novel mixtures of ether-functionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries. RSC Adv. 2015, 5, 33897–33904. [CrossRef] 66. Shi, C.; Jing, Y.; Jia, Y. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 2016, 215, 640–646. [CrossRef] 67. Chung, W.J.; Torrejos, R.E.C.; Park, M.J.; Vivas, E.L.; Limjuco, L.A.; Lawagon, C.P.; Parohinog, K.J.; Lee, S.P.; Shon, H.K.; Kim, H.; et al. Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves. Chem. Eng. J. 2017, 309, 49–62. [CrossRef] 68. Jia, Q.; Wang, J.; Guo, R. Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption– desorption properties in brine. J. Porous Mater. 2019, 26, 705–716. [CrossRef] 69. Wang, S.; Zhang, M.; Zhang, Y.; Zhang, Y.; Qiao, S.; Zheng, S. High adsorption performance of the Mo-doped titanium oxide sieve for lithium ions. Hydrometallurgy 2019, 187, 30–37. [CrossRef] 70. Yu, Q.; Sasaki, K.; Hirajima, T. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery. J. Hazard. Mater. 2013, 262, 38–47. [CrossRef] 71. Ammundsen, B.; Jones, D.J.; Rozière, J.; Berg, H.; Tellgren, R.; Thomas, J.O. Ion exchange in manganese dioxide spinel: Proton, deuteron, and lithium sites determined from neutron powder diffraction data. Chem. Mater. 1998, 10, 1680–1687. [CrossRef] 72. Li, L.; Deshmane, G.; Paranthaman, P.; Bhave, R.; Moyer, A.; Harrison, S. Lithium Recovery from Aqueous Resources and Batteries: A Brief Review. Johns. Matthey Technol. Rev. 2018, 62, 161–176. [CrossRef] 73. Xu, W.; Liu, D.; He, L.; Zhao, Z. A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine. Membranes 2020, 10, 371. [CrossRef] 74. Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [CrossRef] 75. Roy, Y.; Warsinger, D.M.; Lienhard, J.H. Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration. Desalination 2017, 420, 241–257. [CrossRef] 76. Bi, Q.; Zhang, Z.; Zhao, C.; Tao, Z. Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration. Water Sci. Technol. 2014, 70, 1690–1694. [CrossRef] [PubMed] 77. Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohammad, A.W.; Abu Arabi, M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination 2004, 170, 281–308. [CrossRef] 78. Hilal, N.; Al-Zoubi, H.; Mohammad, A.W.; Darwish, N.A. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 2005, 184, 315–326. [CrossRef]PDF Image | Lithium Harvesting using Membranes
PDF Search Title:
Lithium Harvesting using MembranesOriginal File Name Searched:
membranes-12-00373-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Product and Development Focus for Infinity Turbine
ORC Waste Heat Turbine and ORC System Build Plans: All turbine plans are $10,000 each. This allows you to build a system and then consider licensing for production after you have completed and tested a unit.Redox Flow Battery Technology: With the advent of the new USA tax credits for producing and selling batteries ($35/kW) we are focussing on a simple flow battery using shipping containers as the modular electrolyte storage units with tax credits up to $140,000 per system. Our main focus is on the salt battery. This battery can be used for both thermal and electrical storage applications. We call it the Cogeneration Battery or Cogen Battery. One project is converting salt (brine) based water conditioners to simultaneously produce power. In addition, there are many opportunities to extract Lithium from brine (salt lakes, groundwater, and producer water).Salt water or brine are huge sources for lithium. Most of the worlds lithium is acquired from a brine source. It's even in seawater in a low concentration. Brine is also a byproduct of huge powerplants, which can now use that as an electrolyte and a huge flow battery (which allows storage at the source).We welcome any business and equipment inquiries, as well as licensing our turbines for manufacturing.CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)